On the use of KrF lasers for fast ignition

The KrF laser has been considered as an inertial fusion driver alternative to diode-pumped lasers. The possibilities of KrF lasers for fast ignition is supported by their short wavelength and the corresponding larger penetration depth together with the possible use of the same amplifiers for fusion driver and fast ignitor. It is shown that in the case of a fusion test facility both the energy and the intensity requirements can be fulfilled. A fast ignitor using 20 ps KrF pulses requires beam smoothing techniques after angular multiplexing due to the coherence of the beam. A multiple beam fast ignitor is suggested as an alternative in which a high number of beams of 1 ps duration are separately focused on the fuel after polarization demultiplexing. This arrangement allows even the pulse-forming of the ignitor.

[1]  P. Simon,et al.  OPTIMIZED OPERATION OF SHORT-PULSE KRF AMPLIFIERS BY OFF-AXIS AMPLIFICATION , 1992 .

[2]  Wojciech Rozmus,et al.  Absorption of ultra-short laser pulses and particle transport in dense targets , 2006 .

[3]  Stefano Atzeni,et al.  Overview of ignition conditions and gain curves for the fast ignitor , 2005 .

[4]  G. Marowsky,et al.  A 100 mJ Table-Top Short Pulse Amplifier for 248 nm Using Interferometric Multiplexing , 2001 .

[5]  Edward Ott,et al.  Self‐focusing of short intense pulses in plasmas , 1987 .

[6]  Denis G. Colombant,et al.  The Nike KrF laser facility: Performance and initial target experiments , 1996 .

[7]  Michael D. Perry,et al.  Ignition and high gain with ultrapowerful lasers , 1994 .

[8]  O. Shiryaev,et al.  Stability analysis of relativistic and charge-displacement self-channelling of intense laser pulses in underdense plasmas , 1995 .

[9]  P. Mulser,et al.  Fast ignition without hole boring. , 2001, Physical review letters.

[10]  I. D. Smith,et al.  Conceptual design of a 2-MJ KrF laser fusion facility , 1997 .

[11]  P. Simon,et al.  Production of intensities of ∼ 1019 W/cm2 by a table-top KrF laser , 1996 .

[12]  Andrew J. Schmitt,et al.  Pathway to a lower cost high repetition rate ignition facility , 2005 .

[13]  W. Manheimer,et al.  Effects of viscosity in modeling laser fusion implosions , 2007 .

[14]  H. Hora New aspects for fusion energy using inertial confinement , 2007 .

[15]  M. Murakami,et al.  Equation of state and optimum compression in inertial fusion energy , 2007 .

[16]  Kunioki Mima,et al.  Generation and transport of fast electrons inside cone targets irradiated by intense laser pulses , 2006 .

[17]  K. Mima,et al.  Holistic Simulation for FIREX Project with FI , 2007 .

[18]  R R Freeman,et al.  Measurements of energy transport patterns in solid density laser plasma interactions at intensities of 5x10(20) W cm-2. , 2007, Physical review letters.

[19]  Sándor Szatmári,et al.  High-brightness ultraviolet excimer lasers , 1994 .

[20]  Dmitry Varentsov,et al.  Present and future perspectives for high energy density physics with intense heavy ion and laser beams , 2005 .

[21]  John Giuliani,et al.  Efficient electron beam deposition in the gas cell of the Electra laser , 2004 .

[22]  Jean-Claude Kieffer,et al.  Fokker–Planck simulations of hot electron transport in solid density plasma , 2004 .

[23]  R. Betti,et al.  High-density and high-ρR fuel assembly for fast-ignition inertial confinement fusion , 2005 .

[24]  Xiangyang Song,et al.  Explosive supersaturated amplification on 3d→2p Xe(L) hollow atom transitions at λ ∼ 2.7−2.9 Å , 2005 .

[25]  C. Deutsch Penetration of intense charged particle beams in the outer layers of precompressed thermonuclear fuels , 2004 .

[26]  Raymond J. Beach,et al.  Diode-Pumped Solid-State Lasers for Inertial Fusion Energy , 1994 .

[27]  C. Deutsch Fast ignition schemes for inertial confinement fusion , 2003 .

[28]  R. Schneider,et al.  On the inefficiency of hole boring in fast ignition , 2004 .

[29]  L. Torrisi,et al.  Self-focusing in processes of laser generation of highly-charged and high-energy heavy ions , 2006 .

[30]  M. Murakami,et al.  The Interaction Physics of the Fast Ignitor Concept , 1996, Physical review letters.

[31]  P. Simon,et al.  Intensity-dependent loss properties of window materials at 248 nm. , 1989, Optics letters.

[32]  Tabak,et al.  Absorption of ultra-intense laser pulses. , 1992, Physical review letters.

[33]  Arthur Nobile,et al.  Status of the development of ignition capsules in the U.S. effort to achieve thermonuclear ignition on the national ignition facility , 2006 .

[34]  H. Shiraga,et al.  Nuclear fusion: Fast heating scalable to laser fusion ignition , 2002, Nature.

[35]  P. Simon,et al.  Interferometric multiplexing scheme for excimer amplifiers , 1993 .

[36]  M. Tilleman,et al.  Short pulse amplification in the presence of absorption , 1987 .

[37]  G. Mourou,et al.  Terawatt to Petawatt Subpicosecond Lasers , 1994, Science.

[38]  S. Szatmári,et al.  Optimization of multiple-pass off-axis KrF amplifiers , 1995 .

[39]  R. Fabbro,et al.  Ultrahigh-Pressure Laser-Driven Shock-Wave Experiments at 0.26 μm Wavelength , 1984 .

[40]  John Giuliani,et al.  Development of Electron Beam Pumped KrF Lasers for Fusion Energy , 2002 .

[41]  Stefano Atzeni,et al.  Inertial fusion fast ignitor: Igniting pulse parameter window vs the penetration depth of the heating particles and the density of the precompressed fuel , 1999 .

[42]  T. Kikuchi,et al.  Direct-indirect mixture implosion in heavy ion fusion , 2006 .

[43]  N. Miyanaga,et al.  Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition , 2001, Nature.

[44]  F. Schäfer,et al.  Comparative study of the gain dynamics of XeCl and KrF with subpicosecond resolution , 1987 .

[45]  N. V. Didenko,et al.  GARPUN-MTW: A hybrid Ti:Sapphire/KrF laser facility for simultaneous amplification of subpicosecond/nanosecond pulses relevant to fast-ignition ICF concept , 2007 .

[46]  C. Deutsch,et al.  Low velocity ion stopping of relevance to the US beam-target program , 2006 .

[47]  M. C. Serna Moreno,et al.  Numerical simulations of Rayleigh-Taylor instability in elastic solids , 2006 .