Lectures on renormalization and asymptotic safety
暂无分享,去创建一个
[1] T. Morris. On Truncations of the Exact Renormalization Group , 1994, hep-th/9405190.
[2] L. Zambelli,et al. Gravitational corrections to Yukawa systems , 2009, 0904.0938.
[3] O. Zanusso,et al. Asymptotic safety in Einstein gravity and scalar-fermion matter. , 2010, Physical review letters.
[4] E. Álvarez,et al. Quantum Gravity , 2004, gr-qc/0405107.
[5] A. Ashtekar,et al. Background independent quantum gravity: a status report , 2004 .
[6] Fixed points of quantum gravity in extra dimensions , 2006, hep-th/0602203.
[7] Jan M. Pawlowski,et al. Fixed points and infrared completion of quantum gravity , 2012, 1209.4038.
[8] Frank Saueressig,et al. Bimetric renormalization group flows in quantum Einstein gravity , 2010, 1006.0099.
[9] Improving the renormalization group approach to the quantum-mechanical double well potential , 2001, quant-ph/0108019.
[10] S. Nagy. Degeneracy induced scaling of the correlation length for periodic models , 2012, 1204.0440.
[11] C. Bervillier. Wilson–Polchinski exact renormalization group equation for O (N) systems: leading and next-to-leading orders in the derivative expansion , 2005, hep-th/0501087.
[12] C. Wetterich,et al. Nonperturbative renormalization flow and essential scaling for the Kosterlitz-Thouless transition , 2001 .
[13] S. Nagy,et al. ONSET OF SYMMETRY BREAKING BY THE FUNCTIONAL RG METHOD , 2009, 0907.0144.
[14] Properties of Derivative Expansion Approximations to the Renormalization Group , 1996, hep-th/9610012.
[15] A gauge invariant exact renormalisation group. (I) , 1999, hep-th/9910058.
[16] A. Eichhorn. Observable consequences of quantum gravity: Can light fermions exist? , 2011, 1109.3784.
[17] Gauge invariance, the quantum action principle, and the renormalization group , 1996, hep-th/9602156.
[18] Three-dimensional massive scalar field theory and the derivative expansion of the renormalization group , 1996, hep-th/9612117.
[19] Daniel F. Litim,et al. Renormalization group and the Planck scale , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[20] H. Gies,et al. Renormalization flow of QED. , 2004, Physical review letters.
[21] M. Reuter,et al. Is quantum Einstein gravity nonperturbatively renormalizable , 2002 .
[22] E. Regős,et al. Casimir effect: running Newton constant or cosmological term , 2004, hep-th/0404185.
[23] S. Nagy,et al. Functional renormalization group approach to the sine-Gordon model. , 2009, Physical review letters.
[24] Frank Saueressig,et al. Fixed-Functionals of three-dimensional Quantum Einstein Gravity , 2012, Journal of High Energy Physics.
[25] Oliver J. Rosten. Fundamentals of the Exact Renormalization Group , 2010, 1003.1366.
[26] S. Weinberg. Ultraviolet divergences in quantum theories of gravitation. , 1980 .
[27] Daniel F Litim,et al. Infrared behavior and fixed points in Landau-gauge QCD. , 2004, Physical review letters.
[28] Frank Saueressig,et al. The universal RG machine , 2010, 1012.3081.
[29] M. Salmhofer,et al. Functional renormalization group approach to correlated fermion systems , 2011, 1105.5289.
[30] A. Trombettoni,et al. Phase structure and compactness , 2010, 1007.5182.
[31] K. Wilson. The renormalization group: Critical phenomena and the Kondo problem , 1975 .
[32] Martin Reuter,et al. The “tetrad only” theory space: nonperturbative renormalization flow and asymptotic safety , 2012, 1203.2158.
[33] I. Nándori,et al. On the renormalization of the bosonized multi-flavor Schwinger model , 2007, 0707.2745.
[34] D. Litim. Fixed points of quantum gravity , 2003, hep-th/0312114.
[35] Flow equation approach to the sine-Gordon model , 2000, cond-mat/0006403.
[36] D. Litim,et al. Renormalisation group flows for gauge theories in axial gauges , 2002, hep-th/0203005.
[37] C. Wetterich,et al. Average action and the renormalization group equations , 1991 .
[38] J. Alexandre,et al. Functional Callan-Symanzik equation for QED , 2001, hep-th/0111152.
[39] 3D Ising Model:The Scaling Equation of State , 1996, hep-th/9610223.
[40] Renormalization of the periodic scalar field theory by Polchinski's renormalization group method , 2002, hep-th/0202113.
[41] J. Braun. Fermion interactions and universal behavior in strongly interacting theories , 2011, 1108.4449.
[42] C. Wetterich,et al. Exact evolution equation for the effective potential , 1993, 1710.05815.
[43] J. Vidal,et al. Nonperturbative renormalization group approach to the Ising model: A derivative expansion at order ∂4 , 2003 .
[44] Frank Saueressig,et al. Matter Induced Bimetric Actions for Gravity , 2010, 1003.5129.
[45] M. Niedermaier,et al. The Asymptotic Safety Scenario in Quantum Gravity , 2006, Living reviews in relativity.
[46] D. Litim,et al. Fixed points of quantum gravity in higher dimensions , 2006, hep-th/0606135.
[47] Effective action and phase structure of multi-layer sine-Gordon type models , 2005, hep-th/0509186.
[48] C. Wetterich,et al. Critical Exponents from the Effective Average Action , 1994 .
[49] Astrid Eichhorn,et al. Light fermions in quantum gravity , 2011, 1104.5366.
[50] Kerson Huang,et al. RENORMALIZATION OF THE SINE-GORDON MODEL AND NONCONSERVATION OF THE KINK CURRENT , 1991 .
[51] C. Wetterich,et al. Universality in phase transitions for ultracold fermionic atoms (31 pages) , 2006 .
[52] Michael Strickland,et al. Optimization of renormalization group flow , 1999, hep-th/9905206.
[53] J. M. Pawlowski,et al. Flow equations for the BCS-BEC crossover , 2007, cond-mat/0701198.
[54] M. H. Goroff,et al. Quantum gravity at two loops , 1985 .
[55] A. Houghton,et al. Renormalization group equation for critical phenomena , 1973 .
[56] J. Pawlowski,et al. Phase structure of two-flavor QCD at finite chemical potential. , 2011, Physical Review Letters.
[57] Frank Saueressig,et al. Fractal space-times under the microscope: a renormalization group view on Monte Carlo data , 2011, 1110.5224.
[58] C. Wetterich,et al. Non-perturbative renormalization flow in quantum field theory and statistical physics , 2002 .
[59] A generalised manifestly gauge invariant exact renormalisation group for SU(N) Yang–Mills , 2005, hep-th/0507154.
[60] Functional Callan–Symanzik Equations , 2000, hep-th/0010128.
[61] Jan M. Pawlowski,et al. Asymptotic freedom of Yang–Mills theory with gravity , 2011, 1101.5552.
[62] A. Patk'os. Invariant formulation of the functional renormalization group method for U(n)×U(n) symmetric matrix models , 2012, 1210.6490.
[63] Manifestly gauge invariant QED , 2005, hep-th/0505169.
[64] Babette Döbrich,et al. Can we see quantum gravity? Photons in the asymptotic-safety scenario , 2012, 1203.6366.
[65] Quantum-mechanical tunnelling and the renormalization group , 2000, hep-th/0010180.
[66] Jan M. Pawlowski. Aspects of the functional renormalisation group , 2007 .
[67] M. Duff,et al. Quantum gravity in 2 + ε dimensions , 1978 .
[68] Holger Gies. Introduction to the Functional RG and Applications to Gauge Theories , 2006 .
[69] Daniel F. Litim. Critical exponents from optimised renormalisation group flows , 2002 .
[70] K. Sailer,et al. Differential renormalization-group approach to the layered sine-Gordon model , 2005, hep-th/0508033.
[71] S. Nagy,et al. Quantum censorship in two dimensions , 2009, 0907.0496.
[72] Derivative expansion of the renormalization group in O(N) scalar field theory , 1997, hep-th/9704202.
[73] É. Brézin,et al. Renormalization of the nonlinear sigma model in 2 + epsilon dimensions. Application to the Heisenberg ferromagnets , 1976 .
[74] Renormalization Group in Quantum Mechanics , 1994, hep-th/9409004.
[75] Roberto Percacci,et al. On classicalization in nonlinear sigma models , 2012, 1202.1101.
[76] Joseph Polchinski,et al. Renormalization and effective lagrangians , 1984 .
[77] R. Percacci,et al. Fixed points of nonlinear sigma models in d > 2 , 2008, 0810.0715.
[78] H. Stuben,et al. Is there a Landau pole problem in QED , 1997, hep-th/9712244.
[79] M. Gräter,et al. Kosterlitz-thouless Phase Transition in the Two Dimensional Linear Σ-model , 1995 .
[80] Roberto Percacci,et al. Fixed points of higher-derivative gravity. , 2006, Physical review letters.
[81] Daniel F Litim. Fixed points of quantum gravity. , 2004, Physical review letters.
[82] H. Gies,et al. Renormalization Group Study of Magnetic Catalysis in the 3d Gross-Neveu Model , 2012, 1201.3746.
[83] The U(1) Gross-Neveu model at non-zero chemical potential , 1995, hep-lat/9501037.
[84] I. Nándori,et al. Functional renormalization group with a compactly supported smooth regulator function , 2012, 1208.5021.
[85] S. Nagy,et al. Functional renormalization group for quantized anharmonic oscillator , 2010, 1009.4041.
[86] Janos Polonyi,et al. Lectures on the functional renormalization group method , 2001, hep-th/0110026.
[87] K. Sailer,et al. Wavefunction renormalization for the Coulomb gas by the Wegner-Houghton renormalization group method , 2000, hep-th/0012208.
[88] Renormalizable parameters of the sine-Gordon model , 2006, hep-th/0611061.
[89] S. Nagy,et al. Infrared fixed point in quantum Einstein gravity , 2012, 1203.6564.
[90] A gauge invariant exact renormalization group II , 2000, hep-th/0006064.
[91] D. Litim. Optimisation of the exact renormalisation group , 2000, hep-th/0005245.
[92] TOPICAL REVIEW: The asymptotic safety scenario in quantum gravity: an introduction , 2006, gr-qc/0610018.
[93] Rainer Dick,et al. Path Integrals in Quantum Mechanics , 2012 .
[94] Raymond Gastmans,et al. Quantum gravity near two dimensions , 1978 .
[95] Renormalization-Group Analysis of Layered Sine-Gordon Type Models , 2005, hep-th/0509100.
[96] Time of arrival through interacting environments: Tunneling processes , 1999, quant-ph/9912109.
[97] W. Marsden. I and J , 2012 .
[98] N. Wschebor,et al. Calculations on the two-point function of the O ( N ) model , 2007, 0708.0238.
[99] Christoph Rahmede,et al. Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation , 2008, 0805.2909.
[100] Christoph Rahmede,et al. ULTRAVIOLET PROPERTIES OF f(R)-GRAVITY , 2007, 0705.1769.
[101] C. Wetterich,et al. Scale dependence of the average potential around the maximum in φ4 theories , 1992 .
[102] Frank Saueressig,et al. Quantum Einstein gravity , 2012, 1202.2274.