Lectures on renormalization and asymptotic safety

Abstract A short introduction is given on the functional renormalization group method, putting emphasis on its nonperturbative aspects. The method enables to find nontrivial fixed points in quantum field theoretic models which make them free from divergences and leads to the concept of asymptotic safety. It can be considered as a generalization of the asymptotic freedom which plays a key role in the perturbative renormalization. We summarize and give a short discussion of some important models, which are asymptotically safe such as the Gross–Neveu model, the nonlinear σ model, the sine–Gordon model, and we consider the model of quantum Einstein gravity which seems to show asymptotic safety, too. We also give a detailed analysis of infrared behavior of such scalar models where a spontaneous symmetry breaking takes place. The deep infrared behavior of the broken phase cannot be treated within the framework of perturbative calculations. We demonstrate that there exists an infrared fixed point in the broken phase which creates a new scaling regime there, however its structure is hidden by the singularity of the renormalization group equations. The theory spaces of these models show several similar properties, namely the models have the same phase and fixed point structure. The quantum Einstein gravity also exhibits similarities when considering the global aspects of its theory space since the appearing two phases there show analogies with the symmetric and the broken phases of the scalar models. These results be nicely uncovered by the functional renormalization group method.

[1]  T. Morris On Truncations of the Exact Renormalization Group , 1994, hep-th/9405190.

[2]  L. Zambelli,et al.  Gravitational corrections to Yukawa systems , 2009, 0904.0938.

[3]  O. Zanusso,et al.  Asymptotic safety in Einstein gravity and scalar-fermion matter. , 2010, Physical review letters.

[4]  E. Álvarez,et al.  Quantum Gravity , 2004, gr-qc/0405107.

[5]  A. Ashtekar,et al.  Background independent quantum gravity: a status report , 2004 .

[6]  Fixed points of quantum gravity in extra dimensions , 2006, hep-th/0602203.

[7]  Jan M. Pawlowski,et al.  Fixed points and infrared completion of quantum gravity , 2012, 1209.4038.

[8]  Frank Saueressig,et al.  Bimetric renormalization group flows in quantum Einstein gravity , 2010, 1006.0099.

[9]  Improving the renormalization group approach to the quantum-mechanical double well potential , 2001, quant-ph/0108019.

[10]  S. Nagy Degeneracy induced scaling of the correlation length for periodic models , 2012, 1204.0440.

[11]  C. Bervillier Wilson–Polchinski exact renormalization group equation for O (N) systems: leading and next-to-leading orders in the derivative expansion , 2005, hep-th/0501087.

[12]  C. Wetterich,et al.  Nonperturbative renormalization flow and essential scaling for the Kosterlitz-Thouless transition , 2001 .

[13]  S. Nagy,et al.  ONSET OF SYMMETRY BREAKING BY THE FUNCTIONAL RG METHOD , 2009, 0907.0144.

[14]  Properties of Derivative Expansion Approximations to the Renormalization Group , 1996, hep-th/9610012.

[15]  A gauge invariant exact renormalisation group. (I) , 1999, hep-th/9910058.

[16]  A. Eichhorn Observable consequences of quantum gravity: Can light fermions exist? , 2011, 1109.3784.

[17]  Gauge invariance, the quantum action principle, and the renormalization group , 1996, hep-th/9602156.

[18]  Three-dimensional massive scalar field theory and the derivative expansion of the renormalization group , 1996, hep-th/9612117.

[19]  Daniel F. Litim,et al.  Renormalization group and the Planck scale , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  H. Gies,et al.  Renormalization flow of QED. , 2004, Physical review letters.

[21]  M. Reuter,et al.  Is quantum Einstein gravity nonperturbatively renormalizable , 2002 .

[22]  E. Regős,et al.  Casimir effect: running Newton constant or cosmological term , 2004, hep-th/0404185.

[23]  S. Nagy,et al.  Functional renormalization group approach to the sine-Gordon model. , 2009, Physical review letters.

[24]  Frank Saueressig,et al.  Fixed-Functionals of three-dimensional Quantum Einstein Gravity , 2012, Journal of High Energy Physics.

[25]  Oliver J. Rosten Fundamentals of the Exact Renormalization Group , 2010, 1003.1366.

[26]  S. Weinberg Ultraviolet divergences in quantum theories of gravitation. , 1980 .

[27]  Daniel F Litim,et al.  Infrared behavior and fixed points in Landau-gauge QCD. , 2004, Physical review letters.

[28]  Frank Saueressig,et al.  The universal RG machine , 2010, 1012.3081.

[29]  M. Salmhofer,et al.  Functional renormalization group approach to correlated fermion systems , 2011, 1105.5289.

[30]  A. Trombettoni,et al.  Phase structure and compactness , 2010, 1007.5182.

[31]  K. Wilson The renormalization group: Critical phenomena and the Kondo problem , 1975 .

[32]  Martin Reuter,et al.  The “tetrad only” theory space: nonperturbative renormalization flow and asymptotic safety , 2012, 1203.2158.

[33]  I. Nándori,et al.  On the renormalization of the bosonized multi-flavor Schwinger model , 2007, 0707.2745.

[34]  D. Litim Fixed points of quantum gravity , 2003, hep-th/0312114.

[35]  Flow equation approach to the sine-Gordon model , 2000, cond-mat/0006403.

[36]  D. Litim,et al.  Renormalisation group flows for gauge theories in axial gauges , 2002, hep-th/0203005.

[37]  C. Wetterich,et al.  Average action and the renormalization group equations , 1991 .

[38]  J. Alexandre,et al.  Functional Callan-Symanzik equation for QED , 2001, hep-th/0111152.

[39]  3D Ising Model:The Scaling Equation of State , 1996, hep-th/9610223.

[40]  Renormalization of the periodic scalar field theory by Polchinski's renormalization group method , 2002, hep-th/0202113.

[41]  J. Braun Fermion interactions and universal behavior in strongly interacting theories , 2011, 1108.4449.

[42]  C. Wetterich,et al.  Exact evolution equation for the effective potential , 1993, 1710.05815.

[43]  J. Vidal,et al.  Nonperturbative renormalization group approach to the Ising model: A derivative expansion at order ∂4 , 2003 .

[44]  Frank Saueressig,et al.  Matter Induced Bimetric Actions for Gravity , 2010, 1003.5129.

[45]  M. Niedermaier,et al.  The Asymptotic Safety Scenario in Quantum Gravity , 2006, Living reviews in relativity.

[46]  D. Litim,et al.  Fixed points of quantum gravity in higher dimensions , 2006, hep-th/0606135.

[47]  Effective action and phase structure of multi-layer sine-Gordon type models , 2005, hep-th/0509186.

[48]  C. Wetterich,et al.  Critical Exponents from the Effective Average Action , 1994 .

[49]  Astrid Eichhorn,et al.  Light fermions in quantum gravity , 2011, 1104.5366.

[50]  Kerson Huang,et al.  RENORMALIZATION OF THE SINE-GORDON MODEL AND NONCONSERVATION OF THE KINK CURRENT , 1991 .

[51]  C. Wetterich,et al.  Universality in phase transitions for ultracold fermionic atoms (31 pages) , 2006 .

[52]  Michael Strickland,et al.  Optimization of renormalization group flow , 1999, hep-th/9905206.

[53]  J. M. Pawlowski,et al.  Flow equations for the BCS-BEC crossover , 2007, cond-mat/0701198.

[54]  M. H. Goroff,et al.  Quantum gravity at two loops , 1985 .

[55]  A. Houghton,et al.  Renormalization group equation for critical phenomena , 1973 .

[56]  J. Pawlowski,et al.  Phase structure of two-flavor QCD at finite chemical potential. , 2011, Physical Review Letters.

[57]  Frank Saueressig,et al.  Fractal space-times under the microscope: a renormalization group view on Monte Carlo data , 2011, 1110.5224.

[58]  C. Wetterich,et al.  Non-perturbative renormalization flow in quantum field theory and statistical physics , 2002 .

[59]  A generalised manifestly gauge invariant exact renormalisation group for SU(N) Yang–Mills , 2005, hep-th/0507154.

[60]  Functional Callan–Symanzik Equations , 2000, hep-th/0010128.

[61]  Jan M. Pawlowski,et al.  Asymptotic freedom of Yang–Mills theory with gravity , 2011, 1101.5552.

[62]  A. Patk'os Invariant formulation of the functional renormalization group method for U(n)×U(n) symmetric matrix models , 2012, 1210.6490.

[63]  Manifestly gauge invariant QED , 2005, hep-th/0505169.

[64]  Babette Döbrich,et al.  Can we see quantum gravity? Photons in the asymptotic-safety scenario , 2012, 1203.6366.

[65]  Quantum-mechanical tunnelling and the renormalization group , 2000, hep-th/0010180.

[66]  Jan M. Pawlowski Aspects of the functional renormalisation group , 2007 .

[67]  M. Duff,et al.  Quantum gravity in 2 + ε dimensions , 1978 .

[68]  Holger Gies Introduction to the Functional RG and Applications to Gauge Theories , 2006 .

[69]  Daniel F. Litim Critical exponents from optimised renormalisation group flows , 2002 .

[70]  K. Sailer,et al.  Differential renormalization-group approach to the layered sine-Gordon model , 2005, hep-th/0508033.

[71]  S. Nagy,et al.  Quantum censorship in two dimensions , 2009, 0907.0496.

[72]  Derivative expansion of the renormalization group in O(N) scalar field theory , 1997, hep-th/9704202.

[73]  É. Brézin,et al.  Renormalization of the nonlinear sigma model in 2 + epsilon dimensions. Application to the Heisenberg ferromagnets , 1976 .

[74]  Renormalization Group in Quantum Mechanics , 1994, hep-th/9409004.

[75]  Roberto Percacci,et al.  On classicalization in nonlinear sigma models , 2012, 1202.1101.

[76]  Joseph Polchinski,et al.  Renormalization and effective lagrangians , 1984 .

[77]  R. Percacci,et al.  Fixed points of nonlinear sigma models in d > 2 , 2008, 0810.0715.

[78]  H. Stuben,et al.  Is there a Landau pole problem in QED , 1997, hep-th/9712244.

[79]  M. Gräter,et al.  Kosterlitz-thouless Phase Transition in the Two Dimensional Linear Σ-model , 1995 .

[80]  Roberto Percacci,et al.  Fixed points of higher-derivative gravity. , 2006, Physical review letters.

[81]  Daniel F Litim Fixed points of quantum gravity. , 2004, Physical review letters.

[82]  H. Gies,et al.  Renormalization Group Study of Magnetic Catalysis in the 3d Gross-Neveu Model , 2012, 1201.3746.

[83]  The U(1) Gross-Neveu model at non-zero chemical potential , 1995, hep-lat/9501037.

[84]  I. Nándori,et al.  Functional renormalization group with a compactly supported smooth regulator function , 2012, 1208.5021.

[85]  S. Nagy,et al.  Functional renormalization group for quantized anharmonic oscillator , 2010, 1009.4041.

[86]  Janos Polonyi,et al.  Lectures on the functional renormalization group method , 2001, hep-th/0110026.

[87]  K. Sailer,et al.  Wavefunction renormalization for the Coulomb gas by the Wegner-Houghton renormalization group method , 2000, hep-th/0012208.

[88]  Renormalizable parameters of the sine-Gordon model , 2006, hep-th/0611061.

[89]  S. Nagy,et al.  Infrared fixed point in quantum Einstein gravity , 2012, 1203.6564.

[90]  A gauge invariant exact renormalization group II , 2000, hep-th/0006064.

[91]  D. Litim Optimisation of the exact renormalisation group , 2000, hep-th/0005245.

[92]  TOPICAL REVIEW: The asymptotic safety scenario in quantum gravity: an introduction , 2006, gr-qc/0610018.

[93]  Rainer Dick,et al.  Path Integrals in Quantum Mechanics , 2012 .

[94]  Raymond Gastmans,et al.  Quantum gravity near two dimensions , 1978 .

[95]  Renormalization-Group Analysis of Layered Sine-Gordon Type Models , 2005, hep-th/0509100.

[96]  Time of arrival through interacting environments: Tunneling processes , 1999, quant-ph/9912109.

[97]  W. Marsden I and J , 2012 .

[98]  N. Wschebor,et al.  Calculations on the two-point function of the O ( N ) model , 2007, 0708.0238.

[99]  Christoph Rahmede,et al.  Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation , 2008, 0805.2909.

[100]  Christoph Rahmede,et al.  ULTRAVIOLET PROPERTIES OF f(R)-GRAVITY , 2007, 0705.1769.

[101]  C. Wetterich,et al.  Scale dependence of the average potential around the maximum in φ4 theories , 1992 .

[102]  Frank Saueressig,et al.  Quantum Einstein gravity , 2012, 1202.2274.