Absolute parallelism for 2-nondegenerate CR structures via bigraded Tanaka prolongation
暂无分享,去创建一个
[1] Fredrik Meyer,et al. Representation theory , 2015 .
[2] Jan Gregorovič. On equivalence problem for 2–nondegenerate CR geometries with simple models , 2019 .
[3] C. Medori,et al. The Equivalence Problem for Five-dimensional Levi Degenerate CR Manifolds , 2012, 1210.5638.
[4] E. Cartan. Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes , 1933 .
[5] M. Freeman. Local biholomorphic straightening of real submanifolds , 1977 .
[6] W. Kaup,et al. CR-manifolds of dimension 5: A Lie algebra approach , 2005, math/0508011.
[7] Canonical Form for Matrices Under Unitary Congruence Transformations. I: Conjugate-normal Matrices , 1972 .
[8] N. Tanaka. On the pseudo-conformal geometry of hypersurfaces of the space of $n$ complex variables , 1962 .
[9] P. Lancaster,et al. Indefinite Linear Algebra and Applications , 2005 .
[10] N. Tanaka. On the equivalence problems associated with simple graded Lie algebras , 1979 .
[11] Keizo Yamaguchi,et al. Differential Systems Associated with Simple Graded Lie Algebras , 1993 .
[12] Segre varieties and Lie symmetries , 2000, math/0002197.
[13] I. Zelenko. On Tanaka's Prolongation Procedure for Filtered Structures of Constant Type ? , 2009, 0906.0560.
[14] Peter Ebenfelt,et al. Real Submanifolds in Complex Space and Their Mappings , 1998 .
[15] H. Schichl,et al. Institute for Mathematical Physics Parabolic Geometries and Canonical Cartan Connections Parabolic Geometries and Canonical Cartan Connections , 1999 .
[16] A. Santi. Homogeneous models for Levi degenerate CR manifolds , 2015, 1511.08902.
[17] Leiba Rodman,et al. A New Book in Linear Algebra: Indefinite Linear Algebra and Applications , 2005 .
[18] Uniformly Levi degenerate CR manifolds: The 5-dimensional case , 1999, math/9905163.
[19] Classification of Levi degenerate homogeneous CR-manifolds in dimension 5 , 2006, math/0610375.
[20] C. Porter. The Local Equivalence Problem for 7-Dimensional, 2-Nondegenerate CR Manifolds whose Cubic Form is of Conformal Unitary Type , 2015, 1511.04019.
[21] J. Merker. Lie symmetries and CR geometry , 2008 .
[22] C. Medori,et al. Structure equations of Levi degenerate CR hypersurfaces of uniform type , 2015, 1510.07264.
[23] Shiing-Shen Chern,et al. Real hypersurfaces in complex manifolds , 1974 .
[24] J. Slovák,et al. Parabolic Geometries I , 2009 .
[25] On local CR-transformations of Levi-degenerate group orbits in compact Hermitian symmetric spaces , 2004, math/0412526.
[26] I. Zelenko,et al. A canonical form for pairs consisting of a Hermitian form and a self-adjoint antilinear operator , 2019, 1909.09201.
[27] I. Satake. Algebraic Structures of Symmetric Domains , 2014 .
[28] Contact Lie algebras of vector fields on the plane , 1999, math/9903198.
[29] T. Morimoto. Geometric structures on filtered manifolds , 1992 .
[30] Hornich. Differential systems , 1941 .
[31] N. Tanaka. On differential systems, graded Lie algebras and pseudo-groups , 1970 .
[32] D. Zaitsev,et al. Reduction of Five-Dimensional Uniformly Levi Degenerate CR Structures to Absolute Parallelisms , 2012, 1210.2428.
[33] Armin Uhlmann,et al. Anti- (conjugate) linearity , 2015, 1507.06545.
[34] J. Merker,et al. Explicit Absolute Parallelism for 2-Nondegenerate Real Hypersurfaces $$M^5 \subset \mathbb {C}^3$$M5⊂C3 of Constant Levi Rank 1 , 2013, 1312.6400.
[35] Joe Harris,et al. Representation Theory: A First Course , 1991 .