Recent Advances in Voltammetry

Recent progress in the theory and practice of voltammetry is surveyed and evaluated. The transformation over the last decade of the level of modelling and simulation of experiments has realised major advances such that electrochemical techniques can be fully developed and applied to real chemical problems of distinct complexity. This review focuses on the topic areas of: multistep electrochemical processes, voltammetry in ionic liquids, the development and interpretation of theories of electron transfer (Butler–Volmer and Marcus–Hush), advances in voltammetric pulse techniques, stochastic random walk models of diffusion, the influence of migration under conditions of low support, voltammetry at rough and porous electrodes, and nanoparticle electrochemistry. The review of the latter field encompasses both the study of nanoparticle-modified electrodes, including stripping voltammetry and the new technique of ‘nano-impacts’.

[1]  R. Compton,et al.  The influence of the capping agent on the oxidation of silver nanoparticles: nano-impacts versus stripping voltammetry. , 2015, Chemistry.

[2]  C. Shin,et al.  Potential-controlled current responses from staircase to blip in single Pt nanoparticle collisions on a Ni ultramicroelectrode. , 2015, Journal of the American Chemical Society.

[3]  José L. Fernández,et al.  Theory and experiments for voltammetric and SECM investigations and application to ORR electrocatalysis at nanoelectrode ensembles of ultramicroelectrode dimensions. , 2015, Analytical chemistry.

[4]  Á. Molina,et al.  Application of voltammetric techniques at microelectrodes to the study of the chemical stability of highly reactive species. , 2015, Analytical chemistry.

[5]  R. Compton,et al.  Non‐Invasive Probing of Nanoparticle Electrostatics , 2015 .

[6]  R. Compton,et al.  Thin-Film Modified Rotating Disk Electrodes: Models of Electron-Transfer Kinetics for Passive and Electroactive Films , 2014 .

[7]  R. Compton,et al.  Investigation of single-drug-encapsulating liposomes using the nano-impact method. , 2014, Angewandte Chemie.

[8]  Stefano Passerini,et al.  Aus ionischen Flüssigkeiten hergestellte Materialien für die Energiespeicherung , 2014 .

[9]  Bruno Scrosati,et al.  Energy storage materials synthesized from ionic liquids. , 2014, Angewandte Chemie.

[10]  R. Compton,et al.  Doping of single polymeric nanoparticles. , 2014, Angewandte Chemie.

[11]  A. Kornyshev,et al.  An unusual non-Tafel dependence for electron transfer reactions in ionic liquids at large electrode polarisations: Fiction or reality? , 2014 .

[12]  Morgan J. Anderson,et al.  Single nanoparticle collisions at microfluidic microband electrodes: the effect of electrode material and mass transfer. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[13]  R. Compton,et al.  Understanding nano-impacts: impact times and near-wall hindered diffusion , 2014 .

[14]  R. Compton,et al.  Thin film-modified electrodes: a model for the charge transfer resistance in electrochemical impedance spectroscopy , 2014, Journal of Solid State Electrochemistry.

[15]  F. Zamborini,et al.  Effect of surface charge and electrode material on the size-dependent oxidation of surface-attached metal nanoparticles. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[16]  Shengli Chen,et al.  Electron-transfer kinetics and electric double layer effects in nanometer-wide thin-layer cells. , 2014, ACS nano.

[17]  Á. Molina,et al.  Strong negative nanocatalysis: oxygen reduction and hydrogen evolution at very small (2 nm) gold nanoparticles. , 2014, Nanoscale.

[18]  R. Compton,et al.  The use of cylindrical micro-wire electrodes for nano-impact experiments; facilitating the sub-picomolar detection of single nanoparticles , 2014 .

[19]  Š. Komorsky-Lovrič,et al.  Influence of Electrode Radius on Apparent Lability of Complex of Amalgam Forming Ions , 2014, International Journal of Electrochemical Science.

[20]  J. Helfrick,et al.  Diagnostic criteria for the characterization of quasireversible electron transfer reactions by cyclic square wave voltammetry. , 2014, Analytical chemistry.

[21]  M. Pumera Impact electrochemistry: measuring individual nanoparticles. , 2014, ACS nano.

[22]  R. Compton,et al.  One electron oxygen reduction in room temperature ionic liquids: A comparative study of Butler–Volmer and Symmetric Marcus–Hush theories using microdisc electrodes , 2014, 1503.01654.

[23]  R. Compton,et al.  Diffusional transport to and through thin-layer nanoparticle film modified electrodes: capped CdSe nanoparticle modified electrodes. , 2014, Physical chemistry chemical physics : PCCP.

[24]  R. Compton,et al.  A Critical Evaluation of the Interpretation of Electrocatalytic Nanoimpacts , 2014 .

[25]  Peng Bai,et al.  Simple formula for Marcus–Hush–Chidsey kinetics , 2014, 1407.5370.

[26]  R. Compton,et al.  Electrochemical quantification of iodide ions in synthetic urine using silver nanoparticles: a proof-of-concept. , 2014, The Analyst.

[27]  Shengli Chen,et al.  Heterogeneous electron transfer at nanoscopic electrodes: importance of electronic structures and electric double layers. , 2014, Chemical Society reviews.

[28]  D. Bresser,et al.  Ionic Liquid-based Electrolytes for Li Metal/Air Batteries: A Review of Materials and the New ‘LABOHR’ Flow Cell Concept , 2014 .

[29]  R. Compton,et al.  Electrochemical observation of single collision events: fullerene nanoparticles. , 2014, ACS nano.

[30]  R. Compton,et al.  Nanoparticle impacts reveal magnetic field induced agglomeration and reduced dissolution rates. , 2014, Physical chemistry chemical physics : PCCP.

[31]  Kristopher R. Ward,et al.  Quantifying the apparent ‘Catalytic’ effect of porous electrode surfaces , 2014 .

[32]  Wei Cheng,et al.  Nanoparticle‐Impact Experiments are Highly Sensitive to the Presence of Adsorbed Species on Electrode Surfaces , 2014 .

[33]  N. V. Rees Electrochemical insight from nanoparticle collisions with electrodes: A mini-review , 2014 .

[34]  Ángela Molina,et al.  Recent advances on the theory of pulse techniques: A mini review , 2014 .

[35]  Š. Komorsky-Lovrič,et al.  Theory of square wave voltammetry of amalgam forming ions at spherical electrodes , 2014 .

[36]  R. Compton,et al.  Nano-impacts of bifunctional organic nanoparticles. , 2014, Nanoscale.

[37]  R. Compton,et al.  Shielding of a Microdisc Electrode Surrounded by an Adsorbing Surface , 2014 .

[38]  D. A. Robinson,et al.  Electrochemical monitoring of single nanoparticle collisions at mercury-modified platinum ultramicroelectrodes. , 2014, ACS nano.

[39]  R. Compton,et al.  Organic Nanoparticles: Mechanism of Electron Transfer to Indigo Nanoparticles , 2014 .

[40]  R. Compton,et al.  How many molecules are required to obtain a steady faradaic current from mediated electron transfer at a single nanoparticle on a supporting surface? , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[41]  Bernhard Wolfrum,et al.  Noise phenomena caused by reversible adsorption in nanoscale electrochemical devices. , 2014, ACS nano.

[42]  Steven E. F. Kleijn,et al.  Elektrochemie von Nanopartikeln , 2014 .

[43]  Stanley C. S. Lai,et al.  Electrochemistry of nanoparticles. , 2014, Angewandte Chemie.

[44]  C. Combellas,et al.  Simultaneous electrochemical and 3D optical imaging of silver nanoparticle oxidation , 2014 .

[45]  A. Kornyshev,et al.  Ionic liquids at electrified interfaces. , 2014, Chemical reviews.

[46]  Henrik Ekström,et al.  COMSOL Multiphysics®: Finite element software for electrochemical analysis. A mini-review , 2014 .

[47]  E. Gileadi,et al.  Definition of the transfer coefficient in electrochemistry (IUPAC Recommendations 2014) , 2014 .

[48]  E. Gileadi,et al.  Defining the transfer coefficient in electrochemistry: An assessment (IUPAC Technical Report) , 2014 .

[49]  Shengli Chen,et al.  Electrochemistry at nanometer-sized electrodes. , 2014, Physical chemistry chemical physics : PCCP.

[50]  R. Compton,et al.  The Surface Energy of Single Nanoparticles Probed via Anodic Stripping Voltammetry , 2014 .

[51]  Š. Komorsky-Lovrič,et al.  Square-wave Voltammetry of Two-step Electrode Reaction , 2014, International Journal of Electrochemical Science.

[52]  R. Compton,et al.  Nanoparticle impacts show high-ionic-strength citrate avoids aggregation of silver nanoparticles. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[53]  R. Compton,et al.  Electrochemical sizing of organic nanoparticles. , 2013, Angewandte Chemie.

[54]  Kristopher R. Ward,et al.  Understanding Voltammetry: Simulation of Electrode Processes , 2013 .

[55]  D. A. Robinson,et al.  Influence of the redox indicator reaction on single-nanoparticle collisions at mercury- and bismuth-modified Pt ultramicroelectrodes. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[56]  R. Kappl,et al.  Square-Wave Voltammetry: A Review on the Recent Progress , 2013 .

[57]  R. Compton,et al.  Oxygen reduction at sparse arrays of platinum nanoparticles in aqueous acid: hydrogen peroxide as a liberated two electron intermediate. , 2013, Physical chemistry chemical physics : PCCP.

[58]  M. Zelić,et al.  Cyclic multipulse voltammetric techniques. Part I: Kinetics of electrode processes , 2013 .

[59]  D. Waldeck,et al.  Voltammetry Can Reveal Differences between the Potential Energy Curve (pec) and Density of States (dos) Models for Heterogeneous Electron Transfer , 2013 .

[60]  R. Compton,et al.  Nanotoxicity: an electrochemist's perspective , 2013 .

[61]  R. Compton,et al.  Coulometric sizing of nanoparticles: Cathodic and anodic impact experiments open two independent routes to electrochemical sizing of Fe3O4 nanoparticles , 2013, Nano Research.

[62]  V. Mirceski,et al.  Mechanisms and kinetics of electrode processes at bismuth and antimony film and bare glassy carbon surfaces under square-wave anodic stripping voltammetry conditions , 2013 .

[63]  Kristopher R. Ward,et al.  Nanomaterial modified electrodes: evaluating oxygen reduction catalysts. , 2013, Nanoscale.

[64]  R. Compton,et al.  Electrochemical detection of chloride levels in sweat using silver nanoparticles: a basis for the preliminary screening for cystic fibrosis. , 2013, The Analyst.

[65]  Pradyumna S. Singh,et al.  Noise characteristics of nanoscaled redox-cycling sensors: investigations based on random walks. , 2013, Journal of the American Chemical Society.

[66]  Kristopher R. Ward,et al.  Performance of silver nanoparticles in the catalysis of the oxygen reduction reaction in neutral media: Efficiency limitation due to hydrogen peroxide escape , 2013, Nano Research.

[67]  R. Compton,et al.  Asymmetric Marcus-Hush theory for voltammetry. , 2013, Chemical Society reviews.

[68]  R. Compton,et al.  New approach to electrode kinetic measurements in square-wave voltammetry: amplitude-based quasireversible maximum. , 2013, Analytical chemistry.

[69]  R. Compton,et al.  The anodic stripping voltammetry of nanoparticles: electrochemical evidence for the surface agglomeration of silver nanoparticles. , 2013, Nanoscale.

[70]  Á. Molina,et al.  Effects of convergent diffusion and charge transfer kinetics on the diffusion layer thickness of spherical micro- and nanoelectrodes. , 2013, Physical chemistry chemical physics : PCCP.

[71]  Kristopher R. Ward,et al.  Nanoparticle modified electrodes can show an apparent increase in electrode kinetics due solely to altered surface geometry: The effective electrochemical rate constant for non-flat and non-uniform electrode surfaces , 2013 .

[72]  Kristopher R. Ward,et al.  Changed reactivity of the 1-bromo-4-nitrobenzene radical anion in a room temperature ionic liquid. , 2013, Physical chemistry chemical physics : PCCP.

[73]  R. Compton,et al.  Get More Out of Your Data: A New Approach to Agglomeration and Aggregation Studies Using Nanoparticle Impact Experiments , 2013, ChemistryOpen.

[74]  Š. Komorsky-Lovrič,et al.  Theory of square-wave voltammetry of electrode reaction followed by the dimerization of product , 2013 .

[75]  Kristopher R. Ward,et al.  A joint experimental and computational search for authentic nano-electrocatalytic effects: electrooxidation of nitrite and L-ascorbate on gold nanoparticle-modified glassy carbon electrodes. , 2013, Small.

[76]  M. Koper,et al.  Influence of hydrazine-induced aggregation on the electrochemical detection of platinum nanoparticles. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[77]  Á. Molina,et al.  On the meaning of the diffusion layer thickness for slow electrode reactions. , 2013, Physical Chemistry, Chemical Physics - PCCP.

[78]  R. Compton,et al.  Electrochemistry of nickel nanoparticles is controlled by surface oxide layers. , 2013, Physical chemistry chemical physics : PCCP.

[79]  A. Bond,et al.  Access to enhanced differences in Marcus-Hush and Butler-Volmer electron transfer theories by systematic analysis of higher order AC harmonics. , 2013, Physical chemistry chemical physics : PCCP.

[80]  R. Compton,et al.  Direct electrochemical detection and sizing of silver nanoparticles in seawater media. , 2013, Nanoscale.

[81]  J. Chun Developments in Electrochemistry , 2012 .

[82]  Pradyumna S. Singh,et al.  Stochasticity in single-molecule nanoelectrochemistry: origins, consequences, and solutions. , 2012, ACS nano.

[83]  R. Compton,et al.  A comparison of the Butler–Volmer and asymmetric Marcus–Hush models of electrode kinetics at the channel electrode , 2012 .

[84]  R. Compton,et al.  New chemical insights using weakly supported voltammetry: the reductive cleavage of Aryl-Br bonds is reversible. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[85]  R. Compton,et al.  The charge transfer kinetics of the oxidation of silver and nickel nanoparticles via particle-electrode impact electrochemistry. , 2012, Physical chemistry chemical physics : PCCP.

[86]  R. Compton,et al.  Nanoparticle-electrode impacts: the oxidation of copper nanoparticles has slow kinetics. , 2012, Physical chemistry chemical physics : PCCP.

[87]  R. Compton,et al.  Cyclic voltammetry in the absence of excess supporting electrolyte: The effect of analyte charge , 2012 .

[88]  R. Compton,et al.  Giving physical insight into the Butler–Volmer model of electrode kinetics: Part 2 – Nonlinear solvation effects on the voltammetry of heterogeneous electron transfer processes , 2012 .

[89]  R. Compton,et al.  Direct extraction of kinetic parameters from experimental cyclic voltammetry , 2012 .

[90]  R. Compton,et al.  Determining unknown concentrations of nanoparticles: the particle-impact electrochemistry of nickel and silver , 2012 .

[91]  M. Hoth,et al.  Protein film voltammetry: electrochemical enzymatic spectroscopy. A review on recent progress , 2012, Journal of Solid State Electrochemistry.

[92]  Á. Molina,et al.  Mass transport at electrodes of arbitrary geometry. Reversible charge transfer reactions in square wave voltammetry , 2012, Russian Journal of Electrochemistry.

[93]  R. Compton,et al.  Mass transport to and within porous electrodes. Linear sweep voltammetry and the effects of pore size: The prediction of double peaks for a single electrode process , 2012, Russian Journal of Electrochemistry.

[94]  Richard G. Compton,et al.  Electron transfer kinetics at single nanoparticles , 2012 .

[95]  R. Compton,et al.  Asymmetric Marcus–Hush model of electron transfer kinetics: Application to the voltammetry of surface-bound redox systems , 2012 .

[96]  Q. Li,et al.  Square wave voltammetry at disc microelectrodes for characterization of two electron redox processes. , 2012, Physical chemistry chemical physics : PCCP.

[97]  Á. Molina,et al.  Analytical Solutions for the Study of Multielectron Transfer Processes by Staircase, Cyclic, and Differential Voltammetries at Disc Microelectrodes , 2012 .

[98]  Á. Molina,et al.  Differential pulse techniques in weakly supported media: Changes in the kinetics and thermodynamics of electrode processes resulting from the supporting electrolyte concentration , 2012 .

[99]  Yao Meng,et al.  The formal potentials and electrode kinetics of the proton/hydrogen couple in various room temperature ionic liquids. , 2012, Chemical communications.

[100]  Š. Komorsky-Lovrič,et al.  Theory of square-wave voltammetry of two electron reduction with the intermediate that is stabilized by complexation , 2012 .

[101]  Á. Molina,et al.  Giving physical insight into the Butler–Volmer model of electrode kinetics: Application of asymmetric Marcus–Hush theory to the study of the electroreductions of 2-methyl-2-nitropropane, cyclooctatetraene and europium(III) on mercury microelectrodes , 2012 .

[102]  R. Gulaboski,et al.  Diagnostics of anodic stripping mechanisms under square-wave voltammetry conditions using bismuth film substrates. , 2012, Analytical chemistry.

[103]  A. Nitzan,et al.  On the evaluation of the Marcus–Hush–Chidsey integral , 2012 .

[104]  K. Brainina,et al.  Electrochemistry of metal nanoparticles: the effect of substrate , 2012, Journal of Solid State Electrochemistry.

[105]  R. Compton,et al.  The hydrogen evolution reaction in a room temperature ionic liquid: mechanism and electrocatalyst trends. , 2012, Physical chemistry chemical physics : PCCP.

[106]  R. Compton,et al.  Voltammetry of multi-electron electrode processes of organic species , 2012 .

[107]  R. Compton,et al.  Asymmetric Marcus theory: Application to electrode kinetics , 2012 .

[108]  Richard G Compton,et al.  Mass transport to micro- and nanoelectrodes and their arrays: a review. , 2012, Chemical record.

[109]  R. Compton,et al.  Investigation of the optimal transient times for chronoamperometric analysis of diffusion coefficients and concentrations in non-aqueous solvents and ionic liquids , 2012 .

[110]  R. Compton,et al.  New chemical insights using weakly supported voltammetry: ion pairing in the EC2 reduction of 2,6-diphenylpyrylium in acetonitrile. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[111]  Á. Molina,et al.  Electrochemical Behavior of Two-Electron Redox Processes by Differential Pulse Techniques at Microelectrodes , 2012 .

[112]  R. Compton,et al.  Gold nanoparticles show electroactivity: counting and sorting nanoparticles upon impact with electrodes. , 2012, Chemical communications.

[113]  D. Silvester Recent advances in the use of ionic liquids for electrochemical sensing. , 2011, The Analyst.

[114]  N. Lawrence,et al.  The synthesis and characterisation of controlled thin sub-monolayer films of 2-anthraquinonyl groups on graphite surfaces , 2011 .

[115]  R. Compton,et al.  Edge plane pyrolytic graphite electrode covalently modified with 2-anthraquinonyl groups: theory and experiment. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[116]  N. Lawrence,et al.  Electrolyte tuning of electrode potentials: the one electron vs. two electron reduction of anthraquinone-2-sulfonate in aqueous media. , 2011, Chemical communications.

[117]  R. Compton,et al.  Influence of the diffuse double layer on steady-state voltammetry , 2011 .

[118]  Š. Komorsky-Lovrič,et al.  Theory of square-wave voltammetry of two-step electrode reaction with kinetically stabilized intermediate , 2011 .

[119]  R. Compton,et al.  Electrochemical reactions where the variation of supporting electrolyte concentration is mechanistically revealing: ECE-DISP1 processes in which the chemical step is an isomerisation , 2011 .

[120]  Á. Molina,et al.  A comparison of Marcus–Hush vs. Butler–Volmer electrode kinetics using potential pulse voltammetric techniques , 2011 .

[121]  Á. Molina,et al.  Quantitative weaknesses of the Marcus-Hush theory of electrode kinetics revealed by Reverse Scan Square Wave Voltammetry: The reduction of 2-methyl-2-nitropropane at mercury microelectrodes , 2011 .

[122]  Á. Molina,et al.  Catalytic mechanism in cyclic voltammetry at disc electrodes: an analytical solution. , 2011, Physical chemistry chemical physics : PCCP.

[123]  Á. Molina,et al.  Comparison between double pulse and multipulse differential techniques , 2011 .

[124]  Š. Komorsky-Lovrič,et al.  Simulation of square-wave voltammograms of three-electron redox reaction , 2011 .

[125]  R. Compton,et al.  Voltammetry in the absence of excess supporting electrolyte – ECE-DISP1 reactions: The electrochemical reduction of 2-nitrobromobenzene in acetonitrile solvent , 2011 .

[126]  R. Compton,et al.  Electrochemistry of Hydrogen in the Room Temperature Ionic Liquid 1-Butyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide: Dissolved Hydrogen "Lubricates" Diffusional Transport , 2011 .

[127]  N. Nioradze,et al.  Generalized theory for nanoscale voltammetric measurements of heterogeneous electron-transfer kinetics at macroscopic substrates by scanning electrochemical microscopy. , 2011, Analytical chemistry.

[128]  Á. Molina,et al.  Study of homogeneous chemical reactions at spherical electrodes and microelectrodes in Additive Differential Pulse Voltammetry , 2011 .

[129]  Ian J. Cutress,et al.  How many molecules are required to measure a cyclic voltammogram , 2011 .

[130]  Ian J. Cutress,et al.  Electrochemical random-walk theory: Probing voltammetry with small numbers of molecules: Stochastic versus statistical (Fickian) diffusion , 2011 .

[131]  K. B. Oldham,et al.  On the evaluation and analysis of the Marcus–Hush–Chidsey integral , 2011 .

[132]  Á. Molina,et al.  Analytical expressions for transient diffusion layer thicknesses at non uniformly accessible electrodes , 2011 .

[133]  Richard G Compton,et al.  The electrochemical detection and characterization of silver nanoparticles in aqueous solution. , 2011, Angewandte Chemie.

[134]  Kathryn E. Toghill,et al.  Nickel Nanoparticle Modified BDD Electrode Shows an Electrocatalytic Response to Adenine and DNA in Aqueous Alkaline Media , 2011 .

[135]  R. Gulaboski,et al.  Catalytic mechanism in successive two-step protein-film voltammetry--theoretical study in square-wave voltammetry. , 2011, Biophysical chemistry.

[136]  B. Zhang,et al.  Stochastic electrochemistry with electrocatalytic nanoparticles at inert ultramicroelectrodes--theory and experiments. , 2011, Physical chemistry chemical physics : PCCP.

[137]  Thomas S. Varley,et al.  Beyond the Butler-Volmer equation. Curved Tafel slopes from steady-state current-voltage curves. , 2011, Physical chemistry chemical physics : PCCP.

[138]  M. Lovrić,et al.  Components of the Net Current in Differential Pulse Polarography. Part 2. Kinetics and Adsorption , 2011 .

[139]  R. Compton,et al.  The electroneutrality approximation in electrochemistry , 2011 .

[140]  Y. Tolmachev,et al.  Cyclic versus Staircase Voltammetry in Electrocatalysis: Theoretical Aspects , 2011 .

[141]  M. Ritala,et al.  Atomic Layer Deposition and Characterization of Aluminum Silicate Thin Films for Optical Applications , 2011 .

[142]  R. Compton,et al.  Cyclic voltammetry in weakly supported media: The reduction of the cobaltocenium cation in acetonitrile – Comparison between theory and experiment , 2010 .

[143]  J. Savéant,et al.  Update 1 of: Electrochemical approach to the mechanistic study of proton-coupled electron transfer. , 2010, Chemical reviews.

[144]  V. Mirceski,et al.  Electrocatalysis of the first and second kind: Theoretical and experimental study in conditions of square-wave voltammetry , 2010 .

[145]  Á. Molina,et al.  Additive Differential Pulse Voltammetry for the Study of Slow Charge Transfer Processes at Spherical Electrodes , 2010 .

[146]  R. Compton,et al.  Cyclic voltammetry in the absence of excess supporting electrolyte offers extra kinetic and mechanistic insights: comproportionation of anthraquinone and the anthraquinone dianion in acetonitrile. , 2010, Angewandte Chemie.

[147]  R. Compton,et al.  The electrochemical reduction of 1,4-benzoquinone in 1-ethyl-3-methylimidazolium bis(trifluoromethane-sulfonyl)-imide, [C2mim][NTf2]: A voltammetric study of the comproportionation between benzoquinone and the benzoquinone dianion , 2010 .

[148]  R. Compton,et al.  Nanoparticle modified electrodes: Surface coverage effects in voltammetry showing the transition from convergent to linear diffusion. The reduction of aqueous chromium (III) at silver nanoparticle modified electrodes , 2010 .

[149]  R. Compton,et al.  The zero-field approximation for weakly supported voltammetry: A critical evaluation , 2010 .

[150]  Á. Molina,et al.  Analytical solution for Reverse Pulse Voltammetry at spherical electrodes: A remarkably sensitive method for the characterization of electrochemical reversibility and electrode kinetics , 2010 .

[151]  Á. Molina,et al.  Application of double pulse theory for hemispherical microelectrodes to the experimental study of slow charge transfer processes , 2010 .

[152]  Á. Molina,et al.  Study of Electrochemical Processes with Coupled Homogeneous Chemical Reaction in Differential Pulse Voltammetry at Spherical Electrodes and Microhemispheres , 2010 .

[153]  Á. Molina,et al.  Characterization of slow charge transfer processes in differential pulse voltammetry at spherical electrodes and microelectrodes , 2010 .

[154]  M. Lovrić,et al.  A formal scan rate in staircase and square-wave voltammetry , 2010 .

[155]  D. Fairlie,et al.  Update 1 of: Beta-strand mimetics. , 2010, Chemical reviews.

[156]  S. Feldberg Implications of Marcus-Hush theory for steady-state heterogeneous electron transfer at an inlaid disk electrode. , 2010, Analytical chemistry.

[157]  Richard G Compton,et al.  Electrochemical oxidation of guanine: electrode reaction mechanism and tailoring carbon electrode surfaces to switch between adsorptive and diffusional responses. , 2010, The journal of physical chemistry. B.

[158]  R. Compton,et al.  Transient Voltammetry at Electrodes Modified with a Random Array of Spherical Nanoparticles: Theory , 2010 .

[159]  R. Compton,et al.  Investigating the electrode kinetics of the Li/Li+ Couple in a wide range of room temperature ionic liquids at 298 K , 2010 .

[160]  Mehmet Aslanoglu,et al.  Voltammetric selectivity conferred by the modification of electrodes using conductive porous layers or films: The oxidation of dopamine on glassy carbon electrodes modified with multiwalled carbon nanotubes , 2010 .

[161]  R. Compton,et al.  Voltammetric characterization of DNA intercalators across the full pH range: anthraquinone-2,6-disulfonate and anthraquinone-2-sulfonate. , 2010, The journal of physical chemistry. B.

[162]  Á. Molina,et al.  Geometrical Insights of Transient Diffusion Layers , 2010 .

[163]  A. Bond,et al.  Voltammetry in room temperature ionic liquids: comparisons and contrasts with conventional electrochemical solvents. , 2010, Chemistry, an Asian journal.

[164]  R. Compton,et al.  Effects of thin-layer diffusion in the electrochemical detection of nicotine on basal plane pyrolytic graphite (BPPG) electrodes modified with layers of multi-walled carbon nanotubes (MWCNT-BPPG) , 2010 .

[165]  Jeongmin T. Han,et al.  Quantitative Voltammetry in Weakly Supported Media. Chronoamperometric Studies on Diverse One Electron Redox Couples Containing Various Charged Species: Dissecting Diffusional and Migrational Contributions and Assessing the Breakdown of Electroneutrality , 2010 .

[166]  Olga S. Ivanova,et al.  Size-dependent electrochemical oxidation of silver nanoparticles. , 2010, Journal of the American Chemical Society.

[167]  R. Compton,et al.  Electrochemical determination of nitrite at a bare glassy carbon electrode; why chemically modify electrodes? , 2010 .

[168]  M. Lovrić,et al.  Isopotential points in reverse square-wave voltammetry , 2009 .

[169]  Á. Molina,et al.  Theoretical and experimental study of Differential Pulse Voltammetry at spherical electrodes: Measuring diffusion coefficients and formal potentials , 2009 .

[170]  Pradyumna S. Singh,et al.  Electrochemical correlation spectroscopy in nanofluidic cavities. , 2009, Analytical chemistry.

[171]  Xingjiu Huang,et al.  The reduction of oxygen in various room temperature ionic liquids in the temperature range 293-318 K: exploring the applicability of the Stokes-Einstein relationship in room temperature ionic liquids. , 2009, The journal of physical chemistry. B.

[172]  Rubin Gulaboski,et al.  Surface ECE mechanism in protein film voltammetry—a theoretical study under conditions of square-wave voltammetry , 2009 .

[173]  D. Matyushov Standard electrode potential, Tafel equation, and the solvation thermodynamics. , 2009, The Journal of chemical physics.

[174]  Richard G. Compton,et al.  How Much Supporting Electrolyte Is Required to Make a Cyclic Voltammetry Experiment Quantitatively “Diffusional”? A Theoretical and Experimental Investigation , 2009 .

[175]  R. Compton,et al.  Mass Transport to Nanoelectrode Arrays and Limitations of the Diffusion Domain Approach: Theory and Experiment , 2009 .

[176]  R. Compton,et al.  Electrochemistry in Room-Temperature Ionic Liquids: Potential Windows at Mercury Electrodes , 2009 .

[177]  A. Bond,et al.  Dissolved argon changes the rate of diffusion in room temperature ionic liquids: effect of the presence and absence of argon and nitrogen on the voltammetry of ferrocene , 2009 .

[178]  R. Compton,et al.  Voltammetric currents in room temperature ionic liquids can reflect solutes other than the electroactive species and are influenced by carbon dioxide. , 2009, The journal of physical chemistry. B.

[179]  Francisco Martínez-Ortiz,et al.  Theory for double potential step chronoamperometry for any potential values at spherical electrodes: Simultaneous determination of the diffusion coefficients of the electroactive species , 2009 .

[180]  R. Compton,et al.  SO(2) saturation of the room temperature ionic liquid [C(2)mim][NTf(2)] much reduces the activation energy for diffusion. , 2009, The journal of physical chemistry. B.

[181]  R. Compton,et al.  Quantitative Voltammetry in Weakly Supported Media: Effects of the Applied Overpotential and Supporting Electrolyte Concentration on the One Electron Oxidation of Ferrocene in Acetonitrile , 2009 .

[182]  Xiaoyin Xiao,et al.  Current transients in single nanoparticle collision events. , 2008, Journal of the American Chemical Society.

[183]  R. Compton,et al.  Effect of Water on the Electrochemical Window and Potential Limits of Room-Temperature Ionic Liquids , 2008 .

[184]  R. Compton,et al.  On the use of digital staircase ramps for linear sweep voltammetry at microdisc electrodes: Large step potentials significantly broaden and shift voltammetric peaks , 2008 .

[185]  R. Compton,et al.  Particle Size and Surface Coverage Effects in the Stripping Voltammetry of Silver Nanoparticles: Theory and Experiment , 2008 .

[186]  R. Compton,et al.  Voltammetry in Weakly Supported Media : The Stripping of Thallium from a Hemispherical Amalgam Drop. Theory and Experiment , 2008 .

[187]  R. Compton,et al.  Numerical Simulation of Potential Step Chronoamperometry at Low Concentrations of Supporting Electrolyte , 2008 .

[188]  R. Compton,et al.  Cyclic voltammetry on electrode surfaces covered with porous layers: An analysis of electron transfer kinetics at single-walled carbon nanotube modified electrodes , 2008 .

[189]  R. Compton,et al.  Electrode kinetics and mechanism of iodine reduction in the room-temperature ionic liquid [C4mim][NTf2] , 2008 .

[190]  R. Compton,et al.  Sensitive electrochemical detection of arsenic (III) using gold nanoparticle modified carbon nanotubes via anodic stripping voltammetry. , 2008, Analytica chimica acta.

[191]  Dennis H. Evans One-electron and two-electron transfers in electrochemistry and homogeneous solution reactions. , 2008, Chemical reviews.

[192]  Xiandui Dong,et al.  The electrochemical behavior of a system with a limited number of molecules , 2008 .

[193]  R. Compton,et al.  Extraction of electrode kinetic parameters from microdisc voltammetric data measured under transport conditions intermediate between steady-state convergent and transient linear diffusion as typically applies to room temperature ionic liquids. , 2008, The journal of physical chemistry. B.

[194]  C. A. Jeffrey,et al.  Stripping voltammetry of bismuth at Au(111) : Mathematical modelling and numerical simulation , 2008 .

[195]  Richard G. Compton,et al.  The Electrochemical Reduction of Hydrogen Sulfide on Platinum in Several Room Temperature Ionic Liquids , 2008 .

[196]  R. Compton,et al.  Oxidation of Several p-Phenylenediamines in Room Temperature Ionic Liquids: Estimation of Transport and Electrode Kinetic Parameters , 2008 .

[197]  Darren L. Poole,et al.  Voltammetric Characterization of the Ferrocene|Ferrocenium and Cobaltocenium|Cobaltocene Redox Couples in RTILs , 2008 .

[198]  R. Compton,et al.  Behavior of the heterogeneous electron-transfer rate constants of arenes and substituted anthracenes in room-temperature ionic liquids , 2008 .

[199]  V. Mirceski,et al.  Square-Wave Voltammetry: Theory and Application , 2007 .

[200]  R. Compton,et al.  Diffusion-Limited Currents to Nanoparticles of Various Shapes Supported on an Electrode; Spheres, Hemispheres, and Distorted Spheres and Hemispheres , 2007 .

[201]  R. Compton,et al.  Voltammetry at Nanoparticle and Microparticle Modified Electrodes: Theory and Experiment , 2007 .

[202]  Diane K. Smith,et al.  Voltammetry of quinones in unbuffered aqueous solution: reassessing the roles of proton transfer and hydrogen bonding in the aqueous electrochemistry of quinones. , 2007, Journal of the American Chemical Society.

[203]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[204]  Richard G Compton,et al.  Electrochemical oxidation of nitrite and the oxidation and reduction of NO2 in the room temperature ionic liquid [C2mim][NTf2]. , 2007, The journal of physical chemistry. B.

[205]  Á. Molina,et al.  Application of several multipotential step techniques to the study of multicenter molecules at spherical electrodes of any size , 2007 .

[206]  P. Palange,et al.  From the authors , 2007, European Respiratory Journal.

[207]  R. Compton,et al.  Chemical instability promotes apparent electrochemical irreversibility: Studies on the electrode kinetics of the one electron reduction of the 2,6-diphenylpyrylium cation in acetonitrile solution , 2007 .

[208]  R. Compton,et al.  Electrochemical reduction of nitrobenzene and 4-nitrophenol in the room temperature ionic liquid [C4dmim][N(Tf)2] , 2006 .

[209]  Fritz Scholz,et al.  Nucleation-growth kinetics of the oxidation of silver nanocrystals to silver halide crystals , 2006 .

[210]  J. Savéant Elements of Molecular and Biomolecular Electrochemistry: An Electrochemical Approach to Electron Transfer Chemistry , 2006 .

[211]  M. Zelić Reverse scan as a source of information in square wave voltammetry , 2006 .

[212]  F. Barrière,et al.  Use of weakly coordinating anions to develop an integrated approach to the tuning of deltaE(1/2) values by medium effects. , 2006, Journal of the American Chemical Society.

[213]  R. G. Evans,et al.  A kinetic study of the reaction between N,N-dimethyl-p-toluidine and its electrogenerated radical cation in a room temperature ionic liquid. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[214]  R. Compton,et al.  Extended electrochemical windows made accessible by room temperature ionic liquid/organic solvent electrolyte systems. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[215]  Trevor J. Davies,et al.  The cyclic and linear sweep voltammetry of regular and random arrays of microdisc electrodes: Theory , 2005 .

[216]  Dennis H. Evans,et al.  Study of the effects of ion pairing and activity coefficients on the separation in standard potentials for two-step reduction of dinitroaromatics. , 2005, The journal of physical chemistry. B.

[217]  R. G. Evans,et al.  A comparative electrochemical study of diffusion in room temperature ionic liquid solvents versus acetonitrile. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[218]  R. Compton,et al.  A mechanistic study of the electro-oxidation of bromide in acetonitrile and the room temperature ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide at platinum electrodes , 2005 .

[219]  R. Compton,et al.  Mass transport corrected Tafel analysis for electrochemically reversible systems of complex stoichiometry , 2004 .

[220]  R. G. Evans,et al.  Double potential step chronoamperometry at microdisk electrodes: simulating the case of unequal diffusion coefficients , 2004 .

[221]  Manfred Rudolph Digital simulations on unequally spaced grids. Part 3. Attaining exponential convergence for the discretisation error of the flux as a new strategy in digital simulations of electrochemical experiments , 2004 .

[222]  R. G. Evans,et al.  Non-haloaluminate room-temperature ionic liquids in electrochemistry--a review. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[223]  F. Scholz,et al.  In situ AFM evidence of the involvement of an oversaturated solution in the course of oxidation of silver nanocrystals to silver iodide and bromide crystals , 2004 .

[224]  H. Finklea,et al.  Proton-Coupled Electron Transfer of an Osmium Aquo Complex on a Self-Assembled Monolayer on Gold , 2004 .

[225]  C. Amatore,et al.  Electrochemistry within a limited number of molecules: delineating the fringe between stochastic and statistical behavior. , 2003, Angewandte Chemie.

[226]  R. G. Evans,et al.  Oxidation of N,N,N ’,N ’-tetraalkyl-para-phenylenediamines in a series of room temperature ionic liquids incorporating the bis(trifluoromethylsulfonyl)imide anion , 2003 .

[227]  J. Wadhawan,et al.  Voltammetry of oxygen in the room-temperature ionic liquids 1-ethyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)imide and hexyltriethylammonium bis((trifluoromethyl)sulfonyl)imide: One-electron reduction to form superoxide. Steady-state and transient behavior in the same cyclic voltammogram re , 2003 .

[228]  Itamar Willner,et al.  "Plugging into Enzymes": Nanowiring of Redox Enzymes by a Gold Nanoparticle , 2003, Science.

[229]  Manfred Rudolph Digital simulations on unequally spaced grids.: Part 2. Using the box method by discretisation on a transformed equally spaced grid , 2003 .

[230]  Manfred Rudolph Digital simulations on unequally spaced grids.: Part 1. Critical remarks on using the point method by discretisation on a transformed grid , 2002 .

[231]  D. Krulic,et al.  Reverse scans in square wave voltammetry , 2002 .

[232]  Á. Molina,et al.  Additive differential pulse voltammetry, instead of double differential pulse voltammetry , 2001 .

[233]  S. Szunerits,et al.  The real meaning of Nernst's steady diffusion layer concept under non-forced hydrodynamic conditions. A simple model based on Levich's seminal view of convection , 2001 .

[234]  V. Mirceski,et al.  Ohmic drop effects in square-wave voltammetry , 2001 .

[235]  D. Prieve,et al.  Hindered diffusion of colloidal particles very near to a wall: Revisited , 2000 .

[236]  J. A. Alden,et al.  Peer Reviewed: Voltammetry—Spanning the Kinetic Timescale. , 2000 .

[237]  P. A. Lay,et al.  The Decamethylferrocenium/Decamethylferrocene Redox Couple: A Superior Redox Standard to the Ferrocenium/Ferrocene Redox Couple for Studying Solvent Effects on the Thermodynamics of Electron Transfer , 1999 .

[238]  T. T. Wooster,et al.  A New Way of Using ac Voltammetry To Study Redox Kinetics in Electroactive Monolayers , 1998 .

[239]  R. Müller,et al.  The electrochemical oxidation of thioselenanthrene in acetonitrile at conventional electrodes and microelectrodes , 1996 .

[240]  Manfred Rudolph Digital simulations with the fast implicit finite-difference (FIFD) algorithm. part 4. Simulation of electrical migration and diffuse double-layer effects , 1994 .

[241]  R. Compton,et al.  The photoelectrochemical reduction of p-bromo-nitrobenzene: An ECEE, ECE or DISP process? Mechanistic resolution via channel electrode voltammetry , 1994 .

[242]  P. Dobson,et al.  Hydrodynamic voltammetry with microelectrodes. Channel microband electrodes : theory and experiment , 1993 .

[243]  D. Tallman,et al.  Equivalence of staircase and linear sweep voltammetries for reversible systems including conditions of convergent diffusion , 1992 .

[244]  Manfred Rudolph Digital simulation with the fast implicit finite difference (FIFD) algorithm part 5: Digital simulations of square wave voltammetry for any user defined electrochemical mechanism comprising first- and second-order chemical reactions , 1992 .

[245]  Manfred Rudolph,et al.  Digital simulations with the fast implicit finite difference (FIFD) algorithm: Part II. An improved treatment of electrochemical mechanisms with second-order reactions , 1992 .

[246]  Manfred Rudolph,et al.  A fast implicit finite difference algorithm for the digital simulation of electrochemical processes , 1991 .

[247]  C. Chidsey,et al.  Free Energy and Temperature Dependence of Electron Transfer at the Metal-Electrolyte Interface , 1991, Science.

[248]  Manfred Rudolph An algorithm of general application for the digital simulation of electrochemical processes , 1990 .

[249]  Dennis H. Evans Solution electron-transfer reactions in organic and organometallic electrochemistry , 1990 .

[250]  R. A. Osteryoung,et al.  General equivalence of linear scan and staircase voltammetry: experimental results , 1989 .

[251]  J. J. O'Dea,et al.  Square wave voltammetry for the determination of kinetic parameters: The reduction of zinc(II) at mercury electrodes , 1988 .

[252]  R. A. Osteryoung,et al.  General equivalence of linear scan and staircase voltammetry , 1987 .

[253]  C. Amatore,et al.  Nanosecond time resolved cyclic voltammetry: Direct observation of electrogenerated intermediates with bimolecular diffusion controlled decay using scan rates in the megavolt per second range , 1987 .

[254]  Pa Peter Bobbert,et al.  Diffusion to a slowly growing truncated sphere on a substrate , 1987 .

[255]  R. A. Osteryoung,et al.  Comparison of linear sweep and staircase voltammetries using Walsh series , 1986 .

[256]  R. A. Osteryoung,et al.  Comparison of linear scan and staircase voltammetry: experimental results , 1986 .

[257]  R. Birke,et al.  Diagnosis of reversible, quasi-reversible, and irreversible electrode processes with differential pulse polarography , 1981 .

[258]  E. Kirowa-Eisner,et al.  Reverse pulse polarography , 1980 .

[259]  E. Laviron General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems , 1979 .

[260]  J. Savéant,et al.  Do ECE mechanisms occur in conditions where they could be characterized by electrochemical kinetic techniques , 1978 .

[261]  R. Nelson,et al.  Cathodic Reduction Pathways of Haloaromatics III . Halonitrobenzenes , 1973 .

[262]  J. Savéant,et al.  Electro-oxidation of 1,2-ene-diamines , 1970 .

[263]  J. Lawless,et al.  Mechanistic studies of the decomposition of halonitrobenzene anion radicals , 1969 .

[264]  R. G. Cox,et al.  Slow viscous motion of a sphere parallel to a plane wall—I Motion through a quiescent fluid , 1967 .

[265]  J. H. Christie,et al.  Theory of staircase voltammetry , 1965 .

[266]  Rudolph A. Marcus,et al.  On the Theory of Electron-Transfer Reactions. VI. Unified Treatment for Homogeneous and Electrode Reactions , 1965 .

[267]  W. H. Reinmuth,et al.  Stepwise Reactions in Chronopotentiometry , 1961 .

[268]  N. Hush Adiabatic Rate Processes at Electrodes. I. Energy-Charge Relationships , 1958 .

[269]  Rudolph A. Marcus,et al.  On the Theory of Oxidation‐Reduction Reactions Involving Electron Transfer. I , 1956 .

[270]  A. B. Garrett,et al.  The chemistry of group I: Silver, mercury, lead , 1942 .

[271]  T. Erdey-Grúz,et al.  Zur Theorie der Wasserstoff Überspannung , 1930 .

[272]  Kristopher R. Ward,et al.  The Marcus-Hush model of electrode kinetics at a single nanoparticle , 2014 .

[273]  Richard G. Compton,et al.  Koutecky-Levich analysis applied to nanoparticle modified rotating disk electrodes: Electrocatalysis or misinterpretation , 2013, Nano Research.

[274]  Á. Molina,et al.  Characterization of follow-up chemical reactions by reverse pulse voltammetry. An analytical solution for spherical electrodes and microelectrodes , 2013 .

[275]  R. Compton,et al.  Redox systems obeying Marcus–Hush–Chidsey electrode kinetics do not obey the Randles–Ševčík equation for linear sweep voltammetry , 2012 .

[276]  R. Compton,et al.  A kinetic and mechanistic study of the electrochemical oxidation of hydroquinone in 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, [C2mim][NTf2] , 2011 .

[277]  M. Lovrić,et al.  Theory of square-wave voltammetry of quasireversible electrode reactions using an inverse scan direction , 2010 .

[278]  R. Compton,et al.  The electrochemistry of simple inorganic molecules in room temperature ionic liquids , 2008 .

[279]  M. Lovrić Square-wave voltammetry , 2007 .

[280]  R. Compton,et al.  Coulometry on the Voltammetric Timescale: Microdisk Potential-Step Chronoamperometry in Aprotic Solvents Reliably Measures the Number of Electrons Transferred in an Electrode Process Simultaneously with the Diffusion Coefficients of the Electroactive Species , 2007 .

[281]  J. Wadhawan,et al.  Water-induced accelerated ion diffusion: voltammetric studies in 1-methyl-3-[2,6-(S)-dimethylocten-2-yl]imidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium tetrafluoroborate and hexafluorophosphate ionic liquids , 2000 .

[282]  H. Heering,et al.  Using the pulsed nature of staircase cyclic voltammetry to determine interfacial electron-transfer rates of adsorbed species. , 1999, Analytical chemistry.

[283]  R. Little,et al.  Two-Electron Reactions in Organic and Organometallic Electrochemistry. , 1999 .

[284]  Leslaw K. Bieniasz,et al.  ELSIM - a Problem-solving Environment for Electrochemical Kinetic Simulations. Version 3.0-solution of Governing Equations Associated with Interfacial Species, Independent of Spatial Coordinates Or in One-dimensional Space Geometry , 1997, Comput. Chem..

[285]  Leslaw K. Bieniasz,et al.  ELSIM - A User-friendly PC Program for Electrochemical Kinetic Simulations. Version 1.0 - Solution of Integral Equations for Linear Scan and Cyclic Voltammetry , 1992, Comput. Chem..

[286]  K. B. Oldham,et al.  Chapter 2 Mass Transport to Electrodes , 1986 .

[287]  J. Savéant,et al.  Variation of the electrochemical transfer coefficient with potential , 1982 .

[288]  Stanley Bruckenstein,et al.  Electrochemical Kinetics: Theoretical and Experimental Aspects , 1967 .

[289]  G. C. Barker SQUARE WAVE POLAROGRAPHY AND SOME RELATED TECHNIQUES , 1958 .

[290]  A. Frumkin,et al.  Wasserstoffüberspannung und Struktur der Doppelschicht , 1933 .

[291]  J. A. V. Butler,et al.  Studies in heterogeneous equilibria. Part II.—The kinetic interpretation of the nernst theory of electromotive force , 2022 .

[292]  P. Lugol Annalen der Physik , 1906 .