The evolution of high-redshift massive black holes

Abstract Massive black holes (MBHs) are nowadays recognized as integral parts of galaxy evolution. Both the approximate proportionality between MBH and galaxy mass, and the expected importance of feedback from active MBHs in regulating star formation in their host galaxies point to a strong interplay between MBHs and galaxies. MBHs must form in the first galaxies and be fed by gas in these galaxies, with continuous or intermittent inflows that, at times, can be larger than the Eddington rate. Feedback from supernovae and from the MBHs themselves modulates the growth of the first MBHs. While current observational data only probe the most massive and luminous MBHs, the tip of the iceberg, we will soon be able to test theoretical models of MBH evolution on more “normal” MBHs: the MBHs that are indeed relevant in building the population that we observe in local galaxies, including our own Milky Way.

[1]  Xiaohui Fan,et al.  MOLECULAR GAS IN z ∼ 6 QUASAR HOST GALAXIES , 2010, Astronomy & Astrophysics.

[2]  N. Battaglia,et al.  The BlueTides simulation: first galaxies and reionization , 2015, 1504.06619.

[3]  S. Glover,et al.  New constraints on direct collapse black hole formation in the early Universe , 2015, 1504.04042.

[4]  F. Mannucci,et al.  The MAGNUM survey: Positive feedback in the nuclear region of NGC 5643 suggested by MUSE , 2015, 1508.04464.

[5]  J. Greene,et al.  A ∼50,000 M⊙ SOLAR MASS BLACK HOLE IN THE NUCLEUS OF RGG 118 , 2015, 1506.07531.

[6]  M. Volonteri,et al.  The growth efficiency of high-redshift black holes , 2015, 1506.04750.

[7]  Alessandro Bressan,et al.  The mass spectrum of compact remnants from the parsec stellar evolution tracks , 2015, 1505.05201.

[8]  R. Teyssier,et al.  Black hole evolution – I. Supernova-regulated black hole growth , 2015, 1504.00018.

[9]  R. Brandenberger,et al.  Cosmic string loops as the seeds of super-massive black holes , 2015, 1503.02317.

[10]  Xiaohui Fan,et al.  An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30 , 2015, Nature.

[11]  L. Pentericci,et al.  Faint AGNs at z > 4 in the CANDELS GOODS-S field: looking for contributors to the reionization of the Universe , 2015, 1502.02562.

[12]  T. Quinn,et al.  Off the beaten path: a new approach to realistically model the orbital decay of supermassive black holes in galaxy formation simulations , 2015, 1501.07609.

[13]  A. Omont,et al.  STAR FORMATION RATE AND DYNAMICAL MASS OF 108 SOLAR MASS BLACK HOLE HOST GALAXIES AT REDSHIFT 6 , 2015, 1501.07538.

[14]  Astrophysics,et al.  The systematic search for z ≳ 5 active galactic nuclei in the Chandra Deep Field South , 2015, 1501.06580.

[15]  T. D. Matteo,et al.  Scaling relations between black holes and their host galaxies: comparing theoretical and observational measurements, and the impact of selection effects , 2014, 1412.4133.

[16]  Shy Genel,et al.  The Illustris simulation: the evolving population of black holes across cosmic time , 2014, 1408.6842.

[17]  S. Juneau,et al.  THERMAL AND RADIATIVE ACTIVE GALACTIC NUCLEUS FEEDBACK HAVE A LIMITED IMPACT ON STAR FORMATION IN HIGH-REDSHIFT GALAXIES , 2014, 1405.7971.

[18]  J. Silk,et al.  THE CASE FOR SUPERCRITICAL ACCRETION ONTO MASSIVE BLACK HOLES AT HIGH REDSHIFT , 2014, 1401.3513.

[19]  R. Meijerink,et al.  SONGLINES FROM DIRECT COLLAPSE SEED BLACK HOLES: EFFECTS OF X-RAYS ON BLACK HOLE GROWTH AND STELLAR POPULATIONS , 2014, 1409.0543.

[20]  J. Wise,et al.  THE DIRECT COLLAPSE OF A MASSIVE BLACK HOLE SEED UNDER THE INFLUENCE OF AN ANISOTROPIC LYMAN–WERNER SOURCE , 2014, 1407.4472.

[21]  A. Ferrara,et al.  Initial mass function of intermediate-mass black hole seeds , 2014, 1406.6685.

[22]  D. Sijacki,et al.  Feedback from active galactic nuclei: energy- versus momentum-driving , 2014, Monthly Notices of the Royal Astronomical Society.

[23]  M. Colpi,et al.  Constraining the high-redshift formation of black hole seeds in nuclear star clusters with gas inflows , 2014, 1406.2325.

[24]  F. Bournaud,et al.  Active galactic nuclei-driven outflows without immediate quenching in simulations of high-redshift disc galaxies , 2014, 1402.4482.

[25]  A. Tchekhovskoy,et al.  Numerical simulations of super-critical black hole accretion flows in general relativity , 2013, 1311.5900.

[26]  J. Trump,et al.  The mean star-forming properties of QSO host galaxies , 2013, 1310.1922.

[27]  R. Norris,et al.  ACTIVE GALACTIC NUCLEUS FEEDBACK WORKS BOTH WAYS , 2013 .

[28]  J. Greene,et al.  DWARF GALAXIES WITH OPTICAL SIGNATURES OF ACTIVE MASSIVE BLACK HOLES , 2013, 1308.0328.

[29]  R. Norris,et al.  AGN feedback works both ways , 2013, 1306.6468.

[30]  J. Silk UNLEASHING POSITIVE FEEDBACK: LINKING THE RATES OF STAR FORMATION, SUPERMASSIVE BLACK HOLE ACCRETION, AND OUTFLOWS IN DISTANT GALAXIES , 2013, 1305.5840.

[31]  W. Schmidt,et al.  Black hole formation in the early Universe , 2013, 1304.0962.

[32]  G. Bicknell,et al.  ULTRAFAST OUTFLOWS: GALAXY-SCALE ACTIVE GALACTIC NUCLEUS FEEDBACK , 2012, 1211.5851.

[33]  J. Silk,et al.  Blowing cold flows away: the impact of early AGN activity on the formation of a brightest cluster galaxy progenitor , 2012, 1206.5838.

[34]  J. Greene Low-mass black holes as the remnants of primordial black hole formation , 2012, Nature Communications.

[35]  M. Volonteri The Formation and Evolution of Massive Black Holes , 2012, Science.

[36]  M. Davies,et al.  AN UPPER LIMIT TO THE VELOCITY DISPERSION OF RELAXED STELLAR SYSTEMS WITHOUT MASSIVE BLACK HOLES , 2012, 1206.6167.

[37]  D. Elbaz,et al.  THE HIDDEN “AGN MAIN SEQUENCE”: EVIDENCE FOR A UNIVERSAL BLACK HOLE ACCRETION TO STAR FORMATION RATE RATIO SINCE z ∼ 2 PRODUCING AN MBH–M* RELATION , 2012, 1204.2824.

[38]  Z. Haiman The Formation of the First Massive Black Holes , 2012, 1203.6075.

[39]  M. Colpi,et al.  High‐redshift formation and evolution of central massive objects – II. The census of BH seeds , 2012, 1201.3761.

[40]  KwangHo Park,et al.  ACCRETION ONTO BLACK HOLES FROM LARGE SCALES REGULATED BY RADIATIVE FEEDBACK. III. ENHANCED LUMINOSITY OF INTERMEDIATE-MASS BLACK HOLES MOVING AT SUPERSONIC SPEEDS , 2011, 1110.4634.

[41]  A. Fontana,et al.  Faint high-redshift AGN in the Chandra deep field south: the evolution of the AGN luminosity function and black hole demography , 2011, 1109.2888.

[42]  D. Pogosyan,et al.  Feeding compact bulges and supermassive black holes with low angular momentum cosmic gas at high redshift , 2011, 1112.2479.

[43]  J. Silk,et al.  Jet-induced star formation in gas-rich galaxies , 2011, 1111.4478.

[44]  M. Volonteri,et al.  Assessing the redshift evolution of massive black holes and their hosts , 2011, 1107.1946.

[45]  R. Teyssier,et al.  BLACK HOLE GROWTH AND ACTIVE GALACTIC NUCLEI OBSCURATION BY INSTABILITY-DRIVEN INFLOWS IN HIGH-REDSHIFT DISK GALAXIES FED BY COLD STREAMS , 2011, 1107.1483.

[46]  Yu Feng,et al.  COLD FLOWS AND THE FIRST QUASARS , 2011, 1107.1253.

[47]  Richard G. McMahon,et al.  A luminous quasar at a redshift of z = 7.085 , 2011, Nature.

[48]  M. Davies,et al.  SUPERMASSIVE BLACK HOLE FORMATION VIA GAS ACCRETION IN NUCLEAR STELLAR CLUSTERS , 2011, 1106.5943.

[49]  J. Pel,et al.  The High Road to Astronomical Photometric Precision: Differential Photometry , 2011 .

[50]  T. Greif,et al.  Accretion on to black holes formed by direct collapse , 2010, 1007.3849.

[51]  A. Omont,et al.  EDDINGTON-LIMITED ACCRETION AND THE BLACK HOLE MASS FUNCTION AT REDSHIFT 6 , 2010, 1006.1342.

[52]  M. Volonteri,et al.  Quasi‐stars and the cosmic evolution of massive black holes , 2010, 1003.5220.

[53]  Marta Volonteri,et al.  Formation of supermassive black holes , 2010, 1003.4404.

[54]  A. Treves,et al.  The quasar relation through cosmic time – II. Evidence for evolution from z = 3 to the present age , 2009, 0911.2988.

[55]  J. Trump,et al.  ON THE COSMIC EVOLUTION OF THE SCALING RELATIONS BETWEEN BLACK HOLES AND THEIR HOST GALAXIES: BROAD-LINE ACTIVE GALACTIC NUCLEI IN THE zCOSMOS SURVEY , 2009, 0910.4970.

[56]  S. Couch,et al.  ACCRETION ONTO INTERMEDIATE-MASS BLACK HOLES IN DENSE PROTOGALACTIC CLOUDS , 2008, 0812.2516.

[57]  T. Abel,et al.  ACCRETION ONTO THE FIRST STELLAR-MASS BLACK HOLES , 2007, 0811.0820.

[58]  A. de Koter,et al.  On the evolution and fate of super-massive stars , 2007, 0710.1181.

[59]  Astronomy,et al.  The mass function of high-redshift seed black holes , 2007, astro-ph/0702340.

[60]  P. Hopkins,et al.  Formation of z~6 Quasars from Hierarchical Galaxy Mergers , 2006, astro-ph/0608190.

[61]  G. Kauffmann,et al.  The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colour , 2005, astro-ph/0508046.

[62]  National Radio Astronomy Observatory,et al.  The Black Hole-Bulge Relationship for QSOs at High Redshift , 2005, astro-ph/0512418.

[63]  M. Rees,et al.  Rapid Growth of High-Redshift Black Holes , 2005, astro-ph/0506040.

[64]  M. Valluri,et al.  The Low End of the Supermassive Black Hole Mass Function: Constraining the Mass of a Nuclear Black Hole in NGC 205 via Stellar Kinematics , 2005, astro-ph/0502493.

[65]  A. Sakharov,et al.  Primordial structure of massive black hole clusters , 2004, astro-ph/0401532.

[66]  J. Dunlop,et al.  The cosmological evolution of quasar black hole masses , 2003, astro-ph/0405393.

[67]  S. Shapiro,et al.  Collapse of a Rotating Supermassive Star to a Supermassive Black Hole: Fully Relativistic Simulations , 2002, astro-ph/0205091.

[68]  T. Lauer,et al.  M33: A Galaxy with No Supermassive Black Hole , 2001, astro-ph/0107135.

[69]  S. Mineshige,et al.  Slim-Disk model for Soft X-Ray Excess and Variability of Narrow-Line Seyfert 1 Galaxies , 2000, astro-ph/0003017.

[70]  S. Shapiro,et al.  Evolution of Rotating Supermassive Stars to the Onset of Collapse , 1999, astro-ph/9909237.

[71]  J. Lasota,et al.  Slim Accretion Disks , 1988 .

[72]  M. Rees BLACK HOLE MODELS FOR ACTIVE GALACTIC NUCLEI , 1984 .

[73]  M. Begelman Can a spherically accreting black hole radiate very near the Eddington limit , 1979 .

[74]  W. Fowler The stability of supermassive stars. , 1966 .