Regression models for the analysis of longitudinal Gaussian data from multiple sources

We present a regression model for the joint analysis of longitudinal multiple source Gaussian data. Longitudinal multiple source data arise when repeated measurements are taken from two or more sources, and each source provides a measure of the same underlying variable and on the same scale. This type of data generally produces a relatively large number of observations per subject; thus estimation of an unstructured covariance matrix often may not be possible. We consider two methods by which parsimonious models for the covariance can be obtained for longitudinal multiple source data. The methods are illustrated with an example of multiple informant data arising from a longitudinal interventional trial in psychiatry.

[1]  B A Rosner,et al.  Analysis of longitudinally observed irregularly timed multivariate outcomes: regression with focus on cross-component correlation. , 2001, Statistics in medicine.

[2]  Robert J. Boik,et al.  The mixed model for multivariate repeated measures: validity conditions and an approximate test , 1988 .

[3]  Pierre Dutilleul,et al.  A doubly multivariate model for statistical analysis of spatio-temporal environmental data , 1996 .

[4]  T. Achenbach,et al.  Child/adolescent behavioral and emotional problems: implications of cross-informant correlations for situational specificity. , 1987, Psychological bulletin.

[5]  D. Heitjan,et al.  Modelling repeated-series longitudinal data. , 1997, Statistics in medicine.

[6]  Nicole A. Lazar,et al.  Statistical Analysis With Missing Data , 2003, Technometrics.

[7]  R. J. Martin A subclass of lattice processes applied to a problem in planar sampling , 1979 .

[8]  Jan Kmenta,et al.  Elements of econometrics , 1988 .

[9]  R. Carroll,et al.  A Note on the Efficiency of Sandwich Covariance Matrix Estimation , 2001 .

[10]  Myunghee C. Paik,et al.  The generalized estimating equation approach when data are not missing completely at random , 1997 .

[11]  P. Diggle,et al.  Analysis of Longitudinal Data. , 1997 .

[12]  R. J. Martin The use of time-series models and methods in the analysis of agricultural field trials , 1990 .

[13]  P. J. Huber The behavior of maximum likelihood estimates under nonstandard conditions , 1967 .

[14]  J. Ware,et al.  Random-effects models for longitudinal data. , 1982, Biometrics.

[15]  G. Reinsel,et al.  Multivariate Repeated-Measurement or Growth Curve Models with Multivariate Random-Effects Covariance Structure , 1982 .

[16]  Garrett M. Fitzmaurice,et al.  Analysis of longitudinal multiple‐source binary data using generalized estimating equations , 2004 .

[17]  B. Cullis,et al.  The Analysis of Multistratum and Spatially Correlated Repeated Measures Data , 1992 .

[18]  Rudolf H. Moos,et al.  The quality of social support: Measures of family and work relationships , 1983 .

[19]  D. A. Andrews,et al.  The Family Relationship Index: validity data. , 1989, Journal of clinical psychology.

[20]  Andrzej T. Galecki,et al.  General class of covariance structures for two or more repeated factors in longitudinal data analysis , 1994 .

[21]  David A. Schoenfeld,et al.  A Random-Effects Model for Multiple Characteristics with Possibly Missing Data , 1997 .

[22]  J Rochon,et al.  Analyzing bivariate repeated measures for discrete and continuous outcome variables. , 1996, Biometrics.

[23]  Taesung Park,et al.  Covariance models for nested repeated measures data: analysis of ovarian steroid secretion data. , 2002, Statistics in medicine.

[24]  Abel M. Rodrigues Matrix Algebra Useful for Statistics , 2007 .

[25]  S. R. Searle,et al.  Matrix Algebra Useful for Statistics , 1982 .

[26]  R. Jennrich,et al.  Unbalanced repeated-measures models with structured covariance matrices. , 1986, Biometrics.

[27]  Roderick J. A. Little,et al.  Statistical Analysis with Missing Data , 1988 .

[28]  G. Reinsel,et al.  Models for Longitudinal Data with Random Effects and AR(1) Errors , 1989 .

[29]  J. Robins,et al.  Analysis of semiparametric regression models for repeated outcomes in the presence of missing data , 1995 .

[30]  Constantine Daskalakis,et al.  Regression analysis of multiple-source longitudinal outcomes: a "Stirling County" depression study. , 2002, American journal of epidemiology.

[31]  E. J. Wright,et al.  Examination of children's responses to two preventive intervention strategies over time. , 1997, Journal of the American Academy of Child and Adolescent Psychiatry.

[32]  P. Diggle Analysis of Longitudinal Data , 1995 .