Glucose-induced CRL4COP1-p53 axis amplifies glycometabolism to drive tumorigenesis.

[1]  B. Schulman,et al.  Systemwide disassembly and assembly of SCF ubiquitin ligase complexes , 2023, Cell.

[2]  X. Yang,et al.  Structural basis of bacterial effector protein azurin targeting tumor suppressor p53 and inhibiting its ubiquitination , 2023, Communications Biology.

[3]  N. Pavlova,et al.  The hallmarks of cancer metabolism: Still emerging. , 2022, Cell metabolism.

[4]  D. Langley,et al.  PROTAC targeted protein degraders: the past is prologue , 2022, Nature Reviews Drug Discovery.

[5]  Xiuyan Yang,et al.  5-IP7 is a GPCR messenger mediating neural control of synaptotagmin-dependent insulin exocytosis and glucose homeostasis , 2021, Nature Metabolism.

[6]  R. Coppari,et al.  O-GlcNAcylated p53 in the liver modulates hepatic glucose production , 2021, Nature Communications.

[7]  Gen Li,et al.  p53 deficiency induces MTHFD2 transcription to promote cell proliferation and restrain DNA damage , 2021, Proceedings of the National Academy of Sciences.

[8]  Hong Lin,et al.  IP6-assisted CSN-COP1 competition regulates a CRL4-ETV5 proteolytic checkpoint to safeguard glucose-induced insulin secretion , 2021, Nature Communications.

[9]  J. Harper,et al.  Cullin-RING Ubiquitin Ligase Regulatory Circuits: a Quarter Century Beyond the F-box Hypothesis. , 2021, Annual review of biochemistry.

[10]  W. Gu,et al.  The complexity of p53-mediated metabolic regulation in tumor suppression. , 2021, Seminars in cancer biology.

[11]  G. Hart,et al.  Nutrient regulation of the flow of genetic information by O-GlcNAcylation. , 2021, Biochemical Society transactions.

[12]  L. Attardi,et al.  p53 and Tumor Suppression: It Takes a Network. , 2021, Trends in cell biology.

[13]  W. Muller,et al.  Insights from transgenic mouse models of PyMT-induced breast cancer: recapitulating human breast cancer progression in vivo , 2020, Oncogene.

[14]  B. Schulman,et al.  NEDD8 and ubiquitin ligation by cullin-RING E3 ligases. , 2020, Current opinion in structural biology.

[15]  V. Rubio,et al.  DET1-mediated COP1 regulation avoids HY5 activity over second-site targets to tune plant photomorphogenesis , 2020, bioRxiv.

[16]  F. Hu,et al.  Incident Type 2 Diabetes Duration and Cancer Risk: A Prospective Study in Two US Cohorts. , 2020, Journal of the National Cancer Institute.

[17]  Rongcheng Lin,et al.  Photobiology: light signal transduction and photomorphogenesis. , 2020, Journal of integrative plant biology.

[18]  Kylie L. Gorringe,et al.  The TP53 mutation rate differs in breast cancers that arise in women with high or low mammographic density , 2020, npj Breast Cancer.

[19]  Kairong Cui,et al.  Diploid genome architecture revealed by multi-omic data of hybrid mice , 2020, Genome research.

[20]  D. Fushman,et al.  Structural basis for DNA damage-induced phosphoregulation of MDM2 RING domain , 2020, Nature Communications.

[21]  N. Huang,et al.  Basis for metabolite-dependent Cullin-RING ligase deneddylation by the COP9 signalosome , 2020, Proceedings of the National Academy of Sciences.

[22]  Kurt M. Reichermeier,et al.  PIKES Analysis Reveals Response to Degraders and Key Regulatory Mechanisms of the CRL4 Network. , 2020, Molecular cell.

[23]  Yi Sun,et al.  FBXW7 Confers Radiation Survival by Targeting p53 for Degradation. , 2020, Cell reports.

[24]  B. Schulman,et al.  NEDD8 nucleates a multivalent cullin-RING-UBE2D ubiquitin ligation assembly , 2020, Nature.

[25]  L. Linares,et al.  Metabolic functions of the tumor suppressor p53: Implications in normal physiology, metabolic disorders, and cancer , 2019, Molecular metabolism.

[26]  Yi Sun,et al.  Anticancer drug discovery by targeting cullin neddylation , 2019, Acta pharmaceutica Sinica. B.

[27]  M. Bhat,et al.  Hyperglycemia Associated Metabolic and Molecular Alterations in Cancer Risk, Progression, Treatment, and Mortality , 2019, Cancers.

[28]  M. Pagano,et al.  Cryptochromes-Mediated Inhibition of the CRL4Cop1-Complex Assembly Defines an Evolutionary Conserved Signaling Mechanism , 2019, Current Biology.

[29]  G. Liao,et al.  AMPK Promotes SPOP-Mediated NANOG Degradation to Regulate Prostate Cancer Cell Stemness. , 2019, Developmental cell.

[30]  Darjus F. Tschaharganeh,et al.  p53 Represses the Mevalonate Pathway to Mediate Tumor Suppression , 2019, Cell.

[31]  Wenyi Wei,et al.  The emerging role for Cullin 4 family of E3 ligases in tumorigenesis. , 2019, Biochimica et biophysica acta. Reviews on cancer.

[32]  K. Vousden,et al.  Control of metabolism by p53 – Cancer and beyond , 2018, Biochimica et biophysica acta. Reviews on cancer.

[33]  L. Adès,et al.  Phase 3 study of first line pevonedistat (PEV) + azacitidine (AZA) versus single-agent AZA in patients with higher-risk myelodysplastic syndromes (HR MDS), chronic myelomonocytic leukemia (CMML) or low-blast acute myelogenous leukemia (AML). , 2018 .

[34]  Justin M. Reitsma,et al.  Cand1-Mediated Adaptive Exchange Mechanism Enables Variation in F-Box Protein Expression. , 2018, Molecular cell.

[35]  Asli N. Goktug,et al.  Blocking an N-terminal acetylation–dependent protein interaction inhibits an E3 ligase , 2017, Nature chemical biology.

[36]  Lin Yan,et al.  High-fat Diet Enhances Mammary Tumorigenesis and Pulmonary Metastasis and Alters Inflammatory and Angiogenic Profiles in MMTV-PyMT Mice. , 2016, Anticancer research.

[37]  E. Altmann,et al.  Targeted inhibition of the COP9 signalosome for treatment of cancer , 2016, Nature Communications.

[38]  I. Pollack,et al.  Phase I trial of p28 (NSC745104), a non-HDM2-mediated peptide inhibitor of p53 ubiquitination in pediatric patients with recurrent or progressive central nervous system tumors: A Pediatric Brain Tumor Consortium Study. , 2016, Neuro-oncology.

[39]  J. Harper,et al.  Two Distinct Types of E3 Ligases Work in Unison to Regulate Substrate Ubiquitylation , 2016, Cell.

[40]  Andrew D. Rouillard,et al.  Enrichr: a comprehensive gene set enrichment analysis web server 2016 update , 2016, Nucleic Acids Res..

[41]  W. I. Mohamed,et al.  Cullin–RING ubiquitin E3 ligase regulation by the COP9 signalosome , 2016, Nature.

[42]  S. Snyder,et al.  Inositol hexakisphosphate (IP6) generated by IP5K mediates cullin-COP9 signalosome interactions and CRL function , 2016, Proceedings of the National Academy of Sciences.

[43]  S. Wild,et al.  Cancer incidence in persons with type 1 diabetes: a five-country study of 9,000 cancers in type 1 diabetic individuals , 2016, Diabetologia.

[44]  G. Hobbs,et al.  High-Fat, High-Calorie Diet Enhances Mammary Carcinogenesis and Local Inflammation in MMTV-PyMT Mouse Model of Breast Cancer , 2015, Cancers.

[45]  P. Scherer,et al.  Hyperglycemia as a Risk Factor for Cancer Progression , 2014, Diabetes & metabolism journal.

[46]  U. Hassiepen,et al.  Crystal structure of the human COP9 signalosome , 2014, Nature.

[47]  Q. Gao,et al.  Overactivated neddylation pathway as a therapeutic target in lung cancer. , 2014, Journal of the National Cancer Institute.

[48]  Michael A. Koldobskiy,et al.  Inositol pyrophosphates mediate the DNA-PK/ATM-p53 cell death pathway by regulating CK2 phosphorylation of Tti1/Tel2. , 2014, Molecular cell.

[49]  S. Cannistraro,et al.  p28, A first in class peptide inhibitor of cop1 binding to p53 , 2013, British Journal of Cancer.

[50]  D. Majumdar,et al.  A first-in-class, first-in-human, phase I trial of p28, a non-HDM2-mediated peptide inhibitor of p53 ubiquitination in patients with advanced solid tumours , 2013, British Journal of Cancer.

[51]  Matthias Peter,et al.  Structural basis for a reciprocal regulation between SCF and CSN. , 2012, Cell reports.

[52]  K. Sugasawa,et al.  The Molecular Basis of CRL4DDB2/CSA Ubiquitin Ligase Architecture, Targeting, and Activation , 2011, Cell.

[53]  G. Hart,et al.  Regulation of CK2 by Phosphorylation and O-GlcNAcylation Revealed by Semisynthesis , 2011, Nature chemical biology.

[54]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[55]  Steven P. Gygi,et al.  Dynamics of Cullin-RING Ubiquitin Ligase Network Revealed by Systematic Quantitative Proteomics , 2010, Cell.

[56]  Michael A. Koldobskiy,et al.  p53-mediated apoptosis requires inositol hexakisphosphate kinase-2 , 2010, Proceedings of the National Academy of Sciences.

[57]  Avi Ma'ayan,et al.  ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments , 2010, Bioinform..

[58]  William Arbuthnot Sir Lane,et al.  ATM activates p53 by regulating MDM2 oligomerization and E3 processivity , 2009, The EMBO journal.

[59]  Jürgen Roth,et al.  O-GlcNAc Protein Modification in Cancer Cells Increases in Response to Glucose Deprivation through Glycogen Degradation* , 2009, The Journal of Biological Chemistry.

[60]  L. Cantley,et al.  Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation , 2009, Science.

[61]  Amanda Doucette,et al.  An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer , 2009, Nature.

[62]  D. Beach,et al.  Cellular senescence bypass screen identifies new putative tumor suppressor genes , 2008, Oncogene.

[63]  G. Parker,et al.  Glucose Deprivation Stimulates O-GlcNAc Modification of Proteins through Up-regulation of O-Linked N-Acetylglucosaminyltransferase* , 2008, Journal of Biological Chemistry.

[64]  Eyal Gottlieb,et al.  TIGAR, a p53-Inducible Regulator of Glycolysis and Apoptosis , 2006, Cell.

[65]  Russell G. Jones,et al.  AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. , 2005, Molecular cell.

[66]  Patrick Dowd,et al.  The ubiquitin ligase COP1 is a critical negative regulator of p53 , 2004, Nature.

[67]  R. Deshaies,et al.  Human De-Etiolated-1 Regulates c-Jun by Assembling a CUL4A Ubiquitin Ligase , 2004, Science.

[68]  L. Vassilev,et al.  In Vivo Activation of the p53 Pathway by Small-Molecule Antagonists of MDM2 , 2004, Science.

[69]  O. Medalia,et al.  Protein kinase CK2 and protein kinase D are associated with the COP9 signalosome , 2003, The EMBO journal.

[70]  Y. Shiloh,et al.  Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[71]  K. Kinzler,et al.  Disruption of p53 in human cancer cells alters the responses to therapeutic agents. , 1999, The Journal of clinical investigation.

[72]  C Caldas,et al.  Somatic mutations in the p53 gene and prognosis in breast cancer: a meta-analysis , 1999, British Journal of Cancer.

[73]  G. Desoye,et al.  Hyperglycemia regulates the glucose‐transport system of clonal choriocarcinoma cells in vitro. A potential molecular mechanism contributing to the adjunct effect of glucose in tumor therapy , 1998, International journal of cancer.

[74]  W. Mosgoeller,et al.  Sustained hyperglycemia in vitro down‐regulates the GLUT1 glucose transport system of cultured human term placental trophoblast: a mechanism to protect fetal development? 1 , 1998, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[75]  Hong Lin,et al.  Cullin-RING Ligase Regulation by the COP9 Signalosome: Structural Mechanisms and New Physiologic Players. , 2020, Advances in experimental medicine and biology.

[76]  L. Jia,et al.  Targeting Protein Neddylation for Cancer Therapy. , 2020, Advances in experimental medicine and biology.

[77]  R. Deshaies,et al.  Assembly and Regulation of CRL Ubiquitin Ligases. , 2020, Advances in experimental medicine and biology.

[78]  Jinfang Zhang,et al.  Targeting SCF E3 Ligases for Cancer Therapies. , 2020, Advances in experimental medicine and biology.

[79]  Shaomeng Wang,et al.  Targeting DCN1-UBC12 Protein-Protein Interaction for Regulation of Neddylation Pathway. , 2020, Advances in experimental medicine and biology.

[80]  N. Zheng,et al.  Structural Biology of CRL Ubiquitin Ligases. , 2020, Advances in experimental medicine and biology.

[81]  L. Hsieh‐Wilson,et al.  Methods for the Detection, Study, and Dynamic Profiling of O-GlcNAc Glycosylation. , 2018, Methods in enzymology.

[82]  Magali Olivier,et al.  TP53 mutations in human cancers: origins, consequences, and clinical use. , 2010, Cold Spring Harbor perspectives in biology.