On the Chvátal–Gomory closure of a compact convex set
暂无分享,去创建一个
[1] Daniel Dadush,et al. The Chvátal-Gomory Closure of a Strictly Convex Body , 2011, Math. Oper. Res..
[2] Alexander Schrijver,et al. On Cutting Planes , 1980 .
[3] Arkadi Nemirovski,et al. Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.
[4] Martin Grötschel,et al. On the symmetric travelling salesman problem II: Lifting theorems and facets , 1979, Math. Program..
[5] Matteo Fischetti,et al. Projected Chvátal–Gomory cuts for mixed integer linear programs , 2008, Math. Program..
[6] Andreas S. Schulz,et al. The Gomory-Chvátal Closure of a Non-Rational Polytope is a Rational Polytope , 2012, OR.
[7] Matteo Fischetti,et al. Optimizing over the first Chvátal closure , 2005, Math. Program..
[8] J. Hunter,et al. Ivan Niven, Diophantine Approximations (Interscience Tracts in Pure and Applied Mathematics, No. 14, John Wiley & Sons, New York), viii+68 pp., 36s. , 1963, Proceedings of the Edinburgh Mathematical Society.
[9] Vasek Chvátal,et al. Edmonds polytopes and a hierarchy of combinatorial problems , 1973, Discret. Math..
[10] J. Edmonds. Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.
[11] Martin Grötschel,et al. On the symmetric travelling salesman problem I: Inequalities , 1979, Math. Program..
[12] J. Hiriart-Urruty,et al. Fundamentals of Convex Analysis , 2004 .
[13] J. Cassels,et al. An Introduction to Diophantine Approximation , 1957 .
[14] Juan Pablo Vielma,et al. The Chvátal-Gomory Closure of an Ellipsoid Is a Polyhedron , 2010, IPCO.
[15] Mehmet Tolga Çezik,et al. Cuts for mixed 0-1 conic programming , 2005, Math. Program..
[16] L. C. EGGANO,et al. Diophantine Approximations , 2010 .
[17] Ralph E. Gomory,et al. Outline of an Algorithm for Integer Solutions to Linear Programs and An Algorithm for the Mixed Integer Problem , 2010, 50 Years of Integer Programming.
[18] Andreas S. Schulz,et al. The Gomory-Chvátal Closure of a Nonrational Polytope Is a Rational Polytope , 2013, Math. Oper. Res..