On the Chvátal–Gomory closure of a compact convex set

In this paper, we show that the Chvatal-Gomory closure of any compact convex set is a rational polytope. This resolves an open question of Schrijver [15] for irrational polytopes, and generalizes the same result for the case of rational polytopes [15], rational ellipsoids [7] and strictly convex bodies [6].

[1]  Daniel Dadush,et al.  The Chvátal-Gomory Closure of a Strictly Convex Body , 2011, Math. Oper. Res..

[2]  Alexander Schrijver,et al.  On Cutting Planes , 1980 .

[3]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[4]  Martin Grötschel,et al.  On the symmetric travelling salesman problem II: Lifting theorems and facets , 1979, Math. Program..

[5]  Matteo Fischetti,et al.  Projected Chvátal–Gomory cuts for mixed integer linear programs , 2008, Math. Program..

[6]  Andreas S. Schulz,et al.  The Gomory-Chvátal Closure of a Non-Rational Polytope is a Rational Polytope , 2012, OR.

[7]  Matteo Fischetti,et al.  Optimizing over the first Chvátal closure , 2005, Math. Program..

[8]  J. Hunter,et al.  Ivan Niven, Diophantine Approximations (Interscience Tracts in Pure and Applied Mathematics, No. 14, John Wiley & Sons, New York), viii+68 pp., 36s. , 1963, Proceedings of the Edinburgh Mathematical Society.

[9]  Vasek Chvátal,et al.  Edmonds polytopes and a hierarchy of combinatorial problems , 1973, Discret. Math..

[10]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[11]  Martin Grötschel,et al.  On the symmetric travelling salesman problem I: Inequalities , 1979, Math. Program..

[12]  J. Hiriart-Urruty,et al.  Fundamentals of Convex Analysis , 2004 .

[13]  J. Cassels,et al.  An Introduction to Diophantine Approximation , 1957 .

[14]  Juan Pablo Vielma,et al.  The Chvátal-Gomory Closure of an Ellipsoid Is a Polyhedron , 2010, IPCO.

[15]  Mehmet Tolga Çezik,et al.  Cuts for mixed 0-1 conic programming , 2005, Math. Program..

[16]  L. C. EGGANO,et al.  Diophantine Approximations , 2010 .

[17]  Ralph E. Gomory,et al.  Outline of an Algorithm for Integer Solutions to Linear Programs and An Algorithm for the Mixed Integer Problem , 2010, 50 Years of Integer Programming.

[18]  Andreas S. Schulz,et al.  The Gomory-Chvátal Closure of a Nonrational Polytope Is a Rational Polytope , 2013, Math. Oper. Res..