How Many Ways Can One Draw A Graph?

Using results from extremal graph theory, we determine the asymptotic number of string graphs with n vertices, i.e., graphs that can be obtained as the intersection graph of a system of continuous arcs in the plane. The number becomes much smaller, for any fixed d, if we restrict our attention to systems of arcs, any two of which cross at most d times. As an application, we estimate the number of different drawings of the complete graph K n with n vertices under various side conditions.

[1]  S. Benzer ON THE TOPOLOGY OF THE GENETIC FINE STRUCTURE. , 1959, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Christos H. Papadimitriou,et al.  Planar Topological Inference (Algorithms and Theory of Computing) , 1998 .

[3]  J. Pach,et al.  Combinatorial geometry , 1995, Wiley-Interscience series in discrete mathematics and optimization.

[4]  H. Prömel,et al.  Excluding Induced Subgraphs III: A General Asymptotic , 1992 .

[5]  M. Egenhofer,et al.  Assessing the Consistency of Complete and Incomplete Topological Information , 1993 .

[6]  Terence R. Smith,et al.  Algebraic approach to spatial reasoning , 1992, Int. J. Geogr. Inf. Sci..

[7]  P. Erdos,et al.  A LIMIT THEOREM IN GRAPH THEORY , 1966 .

[8]  Xin He,et al.  Nonplanar topological inference and political-map graphs , 1999, SODA '99.

[9]  B. Bollobás,et al.  Extremal Graph Theory , 2013 .

[10]  János Pach,et al.  Crossing Patterns of Segments , 2001, J. Comb. Theory, Ser. A.

[11]  János Pach,et al.  Recognizing String Graphs Is Decidable , 2001, GD.

[12]  P. Erdős,et al.  COLLOQUIA MATHEMATICA SOCIETATIS JÁNOS BOLYAI 4 . COMBINATORIAL THEORY AND ITS APPLICATIONS , 1969 .

[13]  Ioannis G. Tollis,et al.  Graph Drawing , 1994, Lecture Notes in Computer Science.

[14]  Marcus Schaefer,et al.  Recognizing string graphs in NP , 2002, STOC '02.

[15]  Robert E. Tarjan,et al.  Efficient Planarity Testing , 1974, JACM.

[16]  Robert E. Tarjan,et al.  Intersection graphs of curves in the plane , 1976, J. Comb. Theory, Ser. B.

[17]  S. Snyder,et al.  Proceedings of the National Academy of Sciences , 1999 .

[18]  Jan Kratochvíl,et al.  String graphs. I. The number of critical nonstring graphs is infinite , 1991, J. Comb. Theory, Ser. B.

[19]  Zhi-Zhong Chen,et al.  Planar map graphs , 1998, STOC '98.

[20]  M. Egenhofer,et al.  Point-Set Topological Spatial Relations , 2001 .

[21]  Marcus Schaefer,et al.  Decidability of string graphs , 2001, STOC '01.

[22]  Richard Pollack,et al.  Upper bounds for configurations and polytopes inRd , 1986, Discret. Comput. Geom..

[23]  P. Erdös On the structure of linear graphs , 1946 .

[24]  Amir Pnueli,et al.  Permutation Graphs and Transitive Graphs , 1972, JACM.

[25]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[26]  Jessica Engel,et al.  Problem , 1902 .

[27]  Jan Kratochvíl,et al.  String graphs. II. recognizing string graphs is NP-hard , 1991, J. Comb. Theory, Ser. B.

[28]  Jan Kratochvíl,et al.  Crossing Number of Abstract Topological Graphs , 1998, GD.

[29]  W. T. Tutte Toward a theory of crossing numbers , 1970 .

[30]  Vojtech Rödl,et al.  The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent , 1986, Graphs Comb..

[31]  F. Sinden Topology of thin film RC circuits , 1966 .

[32]  Ch. Chojnacki,et al.  Über wesentlich unplättbare Kurven im dreidimensionalen Raume , 1934 .

[33]  János Pach,et al.  Combinatorial Geometry , 2012 .