Tuning the Energy Level Offset between Donor and Acceptor with Ferroelectric Dipole Layers for Increased Efficiency in Bilayer Organic Photovoltaic Cells

Ultrathin ferroelectric polyvinylidene fluoride (70%)-tetrafluoroethylene (30%) copolymer film is inserted between the poly3(hexylthiophene) (P3HT) donor and [6,6]-phenyl-C61-butyric acid methylester (PCBM) acceptor layers as the dipole layer to tune the relative energy levels, which can potentially maximize the open circuit voltage of bilayer organic solar cells. In this work, the power conversion efficiency of P3HT/PCBM bilayer solar cells is demonstrated to be doubled with the inserted dipoles.

[1]  M. Thompson,et al.  Elucidating the interplay between dark current coupling and open circuit voltage in organic photovoltaics , 2011 .

[2]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[3]  Yong Cao,et al.  Simultaneous Enhancement of Open‐Circuit Voltage, Short‐Circuit Current Density, and Fill Factor in Polymer Solar Cells , 2011, Advanced materials.

[4]  Gang Li,et al.  For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% , 2010, Advanced materials.

[5]  Stephen Ducharme,et al.  Two-dimensional ferroelectric films , 1998, Nature.

[6]  B. Thompson,et al.  Efficient ternary blend bulk heterojunction solar cells with tunable open-circuit voltage. , 2011, Journal of the American Chemical Society.

[7]  O. Inganäs,et al.  Charge-Transfer States and Upper Limit of the Open-Circuit Voltage in Polymer:Fullerene Organic Solar Cells , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[8]  John R. Reynolds,et al.  Dithienogermole as a fused electron donor in bulk heterojunction solar cells. , 2011, Journal of the American Chemical Society.

[9]  Bernard Kippelen,et al.  Origin of the open-circuit voltage in multilayer heterojunction organic solar cells , 2008 .

[10]  Thomas Kirchartz,et al.  Efficiency Limits of Organic Bulk Heterojunction Solar Cells , 2009 .

[11]  Jinsong Huang,et al.  Increased efficiency of low band gap polymer solar cells at elevated temperature and its origins , 2011 .

[12]  Craig J. Hawker,et al.  Interdiffusion of PCBM and P3HT Reveals Miscibility in a Photovoltaically Active Blend , 2011 .

[13]  P. Blom,et al.  Origin of the efficiency enhancement in ferroelectric functionalized organic solar cells , 2011 .

[14]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[15]  C. Brabec,et al.  Origin of the Open Circuit Voltage of Plastic Solar Cells , 2001 .

[16]  Michael James,et al.  Morphology of All‐Solution‐Processed “Bilayer” Organic Solar Cells , 2011, Advanced materials.

[17]  Stephen Ducharme,et al.  Piezoelectric and pyroelectric properties of ferroelectric Langmuir-Blodgett polymer films , 1999 .

[18]  Yang Yang,et al.  Efficiency enhancement in organic solar cells with ferroelectric polymers. , 2011, Nature materials.

[19]  S. Rhee,et al.  Characterization of poly(vinylidene fluoride-trifluoroethylene) 50/50 copolymer films as a gate dielectric , 2008 .

[20]  Thomas A. Lada,et al.  Novel bis-C60 derivative compared to other fullerene bis-adducts in high efficiency polymer photovoltaic cells , 2011 .

[21]  A. Gruverman Nanoscale insight into the statics and dynamics of polarization behavior in thin film ferroelectric capacitors , 2009, Journal of Materials Science.

[22]  Stephen R. Forrest,et al.  Open circuit voltage enhancement due to reduced dark current in small molecule photovoltaic cells , 2009 .

[23]  David S. Germack,et al.  Substrate-dependent interface composition and charge transport in films for organic photovoltaics , 2009 .

[24]  Yang Yang,et al.  Polymer solar cells with enhanced open-circuit voltage and efficiency , 2009 .

[25]  Olle Inganäs,et al.  On the origin of the open-circuit voltage of polymer-fullerene solar cells. , 2009, Nature materials.

[26]  Wei You,et al.  Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells. , 2011, Journal of the American Chemical Society.

[27]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[28]  Yongfang Li,et al.  Combination of indene-C60 bis-adduct and cross-linked fullerene interlayer leading to highly efficient inverted polymer solar cells. , 2010, Journal of the American Chemical Society.

[29]  Daniel Moses,et al.  Bulk Heterojunction Solar Cells with Large Open‐Circuit Voltage: Electron Transfer with Small Donor‐Acceptor Energy Offset , 2011, Advanced materials.

[30]  Yongfang Li,et al.  6.5% Efficiency of Polymer Solar Cells Based on poly(3‐hexylthiophene) and Indene‐C60 Bisadduct by Device Optimization , 2010, Advanced materials.

[31]  A. Furube,et al.  Ultrafast Studies of Charge Generation in PCBM:P3HT Blend Films following Excitation of the Fullerene PCBM , 2009 .

[32]  Rudolph A. Marcus,et al.  Electron transfer reactions in chemistry. Theory and experiment , 1993 .

[33]  A. Gruverman,et al.  High-resolution studies of domain switching behavior in nanostructured ferroelectric polymers. , 2011, Nano letters.

[34]  M. Wienk,et al.  Discriminating between bilayer and bulk heterojunction polymer:fullerene solar cells using the external quantum efficiency. , 2011, ACS applied materials & interfaces.

[35]  Stephen R. Forrest,et al.  Thermodynamic efficiency limit of excitonic solar cells , 2011 .

[36]  Hiroyuki Miyauchi,et al.  A naphthodithiophene-diketopyrrolopyrrole donor molecule for efficient solution-processed solar cells. , 2011, Journal of the American Chemical Society.