Electrochemical-Thermal Modeling to Evaluate Battery Thermal Management Strategies II. Edge and Internal Cooling

[1]  R. Lockhart Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes , 1949 .

[2]  M. Cooper Heat Flow Rates in Saturated Nucleate Pool Boiling-A Wide-Ranging Examination Using Reduced Properties , 1984 .

[3]  R. Shah,et al.  Handbook of single-phase convective heat transfer , 1987 .

[4]  Shriram Santhanagopalan,et al.  Multi-Domain Modeling of Lithium-Ion Batteries Encompassing Multi-Physics in Varied Length Scales , 2011 .

[5]  U. Kim,et al.  Modeling for the scale-up of a lithium-ion polymer battery , 2009 .

[6]  John N. Harb,et al.  Mathematical model of the discharge behavior of a spirally wound lead-acid cell , 1999 .

[7]  U. Kim,et al.  Effect of electrode configuration on the thermal behavior of a lithium-polymer battery , 2008 .

[8]  T. Fuller,et al.  Temperature-dependent electrochemical heat generation in a commercial lithium-ion battery , 2014 .

[9]  Srinivas Garimella,et al.  Passive, internal thermal management system for batteries using microscale liquid–vapor phase change , 2013 .

[10]  S. Pannala,et al.  A new open computational framework for highly-resolved coupled three-dimensional multiphysics simulations of Li-ion cells , 2014 .

[11]  S. Garimella,et al.  A composite heat transfer correlation for saturated flow boiling in small channels , 2009 .

[12]  Thomas F. Fuller,et al.  Electrochemical-Thermal Modeling to Evaluate Battery Thermal Management Strategies I. Side Cooling , 2015 .

[13]  Somchai Wongwises,et al.  An experimental investigation of two-phase air-water flow through a horizontal circular micro-channel , 2009 .