Assessment of Tea Bush Health and Yield Using Geospatial Techniques STUDY AREA: SONITPUR DISTRICT OF ASSAM, INDIA

[1]  D. He,et al.  Evaluation of textural and multipolarization radar features for crop classification , 1995, IEEE Trans. Geosci. Remote. Sens..

[2]  A COMPARISON OF TWO GEOSPATIAL TECHNOLOGIES IN NON-UNIFORM WHEAT FIELDS: YIELD MONITORS AND REMOTE SENSING , 2003 .

[3]  P. Burrough Principles of Geographical Information Systems for Land Resources Assessment , 1986 .

[4]  John A. Richards,et al.  Remote Sensing Digital Image Analysis , 1986 .

[5]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[6]  Nitin K. Tripathi,et al.  Spectral characterization and LAI modelling for the tea ( Camellia sinensis (L.) O. Kuntze) canopy , 2002 .

[7]  B. Brisco,et al.  Rice monitoring and production estimation using multitemporal RADARSAT , 2001 .

[8]  Russell G. Congalton,et al.  A review of assessing the accuracy of classifications of remotely sensed data , 1991 .

[9]  Rama Chellappa,et al.  Classification of textures using Gaussian Markov random fields , 1985, IEEE Trans. Acoust. Speech Signal Process..

[10]  P. Pizor Principles of Geographical Information Systems for Land Resources Assessment. , 1987 .

[11]  J. H. Park,et al.  REMOTE SENSING ESTIMATION OF FOREST LAI IN CLOSE CANOPY SITUATION , 2004 .

[12]  J. Gamon,et al.  Estimation of leaf area with an integrating sphere. , 1997, Tree physiology.

[13]  B. Brisco,et al.  Precision Agriculture and the Role of Remote Sensing: A Review , 1998 .

[14]  M. Schlerf,et al.  Derivation of forest leaf area index from multi - and hyperspectral remote sensing data , 2004 .

[16]  L. Biehl,et al.  Variation in spectral response of soybeans with respect to illumination, view, and canopy geometry , 1984 .

[17]  N. R. Patel,et al.  Remote sensing of regional yield assessment of wheat in Haryana, India , 2006 .

[18]  R. Myneni,et al.  Potential monitoring of crop production using a satellite-based Climate-Variability Impact Index , 2005 .

[19]  S. S. Ray,et al.  Crop assessment using remote sensing - Part-II: Crop condition and yield assessment. , 2000 .

[20]  P. Mather,et al.  Classification Methods for Remotely Sensed Data , 2001 .

[21]  A. C. Xavier,et al.  Monitoring leaf area index at watershed level through NDVI from Landsat-7/ETM+ data , 2004 .

[22]  R. Colwell Remote sensing of the environment , 1980, Nature.

[23]  Anil K. Jain,et al.  Texture Analysis , 2018, Handbook of Image Processing and Computer Vision.

[24]  S. M. E. Groten,et al.  NDVI—crop monitoring and early yield assessment of Burkina Faso , 1993 .

[25]  V. K. Dadhwal,et al.  CROP GROWTH AND PRODUCTIVITY MONITORING AND SIMULATION USING REMOTE SENSING AND GIS , 2005 .

[26]  S. Goetz,et al.  ADVANCES IN LAND COVER CLASSIFICATION FOR APPLICATIONS RESEARCH : A CASE STUDY FROM THE MID-ATLANTIC RESAC , 2001 .

[27]  Steven W. Running,et al.  Comparisons of land cover and LAI estimates derived from ETM+ and MODIS for four sites in North America: a quality assessment of 2000/2001 provisional MODIS products , 2003 .

[28]  P. Sellers Canopy reflectance, photosynthesis and transpiration , 1985 .

[29]  K. R. Kashwan,et al.  Determination of tea quality by using a neural network based electronic nose , 2003, Proceedings of the International Joint Conference on Neural Networks, 2003..

[30]  Azhar Salleh Vegetation studies using remote sensing techniques , 1993 .

[31]  E. Schanda,et al.  Remote sensing of the environment , 1978, Naturwissenschaften.

[32]  Gao Yan,et al.  Pixel based and object oriented image analysis for coal fire research , 2003 .

[33]  B. P. Jones Determination and Manipulation of Leaf Area Index to Facilitate Site-Specific Management of Double-Crop Soybean in the Mid-Atlantic, U.S.A. , 2002 .

[34]  James F. Boyce,et al.  Co-occurrence matrices for image analysis , 1993 .

[35]  Pierre Defourny,et al.  Crop specific LAI retrieval using optical and radar satellite data for regional crop growth monitoring and modelling , 2005, SPIE Remote Sensing.

[36]  J. Clevers Application of remote sensing to agricultural field trials , 1986 .

[37]  Rama Chellappa,et al.  Texture classification using features derived from random field models , 1982, Pattern Recognit. Lett..

[38]  B. Tudu,et al.  Aroma characterization of orthodox black tea with electronic nose , 2004, 2004 IEEE Region 10 Conference TENCON 2004..

[39]  S. Los,et al.  Correlation between maximum latewood density of annual tree rings and NDVI based estimates of forest productivity , 2000 .

[40]  Michael Blakemore,et al.  The accuracy of spatial databases , 1991 .

[41]  R. Panda,et al.  MODELLING THE INFLUENCE OF IRRIGATION ON THE POTENTIAL YIELD OF TEA (CAMELLIA SINENSIS) IN NORTH-EAST INDIA , 2003, Experimental Agriculture.

[42]  Michael Unser,et al.  Texture classification and segmentation using wavelet frames , 1995, IEEE Trans. Image Process..