A Fourier-Coefficient Based Solution of an Optimal Control Problem in Quantum Chemistry

We consider an optimal control problem for the time-dependent Schrödinger equation modeling molecular dynamics. The dynamics can be steered by interactions with a tuned laser field. The problem of designing an optimal field can be posed as an optimal control problem. We reformulate the optimization problem by using a Fourier transform of the electric field, and narrow the frequency band. The resulting problem is less memory intense, and can be solved with a superlinearly convergent quasi-Newton method. We show computational results for a Raman-transition example and give numerical evidence that our method can outperform the standard monotonically convergent algorithm.

[1]  Christiane P. Koch,et al.  Protecting coherence in optimal control theory : State-dependent constraint approach , 2008, 0803.0921.

[2]  Sverker Holmgren,et al.  Accurate time propagation for the Schrodinger equation with an explicitly time-dependent Hamiltonian. , 2008, The Journal of chemical physics.

[3]  H. Rabitz,et al.  Optimal control of quantum-mechanical systems: Existence, numerical approximation, and applications. , 1988, Physical review. A, General physics.

[4]  J. Werschnik,et al.  Quantum optimal control theory , 2007, 0707.1883.

[5]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[6]  A. Iserles,et al.  Lie-group methods , 2000, Acta Numerica.

[7]  Optimal control of time-dependent targets , 2004, quant-ph/0409124.

[8]  A. Assion,et al.  Femtosecond Laser Pulses: Linear Properties, Manipulation, Generation and Measurement , 2006 .

[9]  E. Gross,et al.  Optimal control of time-dependent targets (9 pages) , 2005 .

[10]  Rabitz,et al.  Optimally controlled quantum molecular dynamics: A perturbation formulation and the existence of multiple solutions. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[11]  Christiane P. Koch,et al.  Stabilization of ultracold molecules using optimal control theory (14 pages) , 2004 .

[12]  Yvon Maday,et al.  New formulations of monotonically convergent quantum control algorithms , 2003 .

[13]  D. Sugny,et al.  Monotonically convergent optimal control theory of quantum systems with spectral constraints on the control field , 2009, 0906.1051.

[14]  D. Tannor,et al.  Introduction to Quantum Mechanics: A Time-Dependent Perspective , 2006 .

[15]  Les S. Jennings,et al.  Discrete-time optimal control problems with general constraints , 1992, TOMS.

[16]  Martin Berggren,et al.  Numerical Solution of a Flow-Control Problem: Vorticity Reduction by Dynamic Boundary Action , 1998, SIAM J. Sci. Comput..

[17]  David J. Tannor,et al.  Loading a Bose-Einstein condensate onto an optical lattice: An application of optimal control theory to the nonlinear Schrödinger equation , 2002 .

[18]  H. Rabitz,et al.  RAPIDLY CONVERGENT ITERATION METHODS FOR QUANTUM OPTIMAL CONTROL OF POPULATION , 1998 .

[19]  V. Krotov,et al.  Global methods in optimal control theory , 1993 .

[20]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[21]  Peter Schwendner,et al.  Photodissociation of Ar2+ in strong laser fields , 1997 .

[22]  David J. Tannor,et al.  Controlled dissociation of I2 via optical transitions between the X and B electronic states , 1993 .

[23]  Herschel Rabitz,et al.  A RAPID MONOTONICALLY CONVERGENT ITERATION ALGORITHM FOR QUANTUM OPTIMAL CONTROL OVER THE EXPECTATION VALUE OF A POSITIVE DEFINITE OPERATOR , 1998 .

[24]  D. Bucknall,et al.  Control of Chemical Reactions by Feedback-Optimized Phase-Shaped Femtosecond Laser Pulses , 1998 .

[25]  F. Träger Springer Handbook of Lasers and Optics , 2007 .

[26]  A. Borzì,et al.  Computational techniques for a quantum control problem with H1-cost , 2008 .

[27]  H. Rabitz,et al.  Teaching lasers to control molecules. , 1992, Physical review letters.

[28]  Ofer M. Shir,et al.  Niching in Evolution Strategies and Its Application to Laser Pulse Shaping , 2005, Artificial Evolution.

[29]  S. Nash,et al.  Linear and Nonlinear Optimization , 2008 .

[30]  H. Rabitz,et al.  Optimal control of selective vibrational excitation in harmonic linear chain molecules , 1988 .

[31]  A. Weiner Femtosecond pulse shaping using spatial light modulators , 2000 .