Peierls stresses of ionic crystals with the NaCl-structure

Abstract Dans les cristaux ioniques de type NaCl les contraintes de Peierls pour le glissement sur des plans {110} et {100} depent de la temperature fortement au dessous d'une temperature critiquement. En addition le volume d'activation descend au dessous de 100 b3. Cette attitude peut etre expliquee par le mecanisme de Peierls. Les contraintes de Peierls estimees d'experience reduit du second degree de la valence des ions descend avec l'augmentation de la somme de polarisabilites des ions de la matrix (σα). La descente est plus grande pour le glissement sur {100} que sur {110}. Un change du plan de glissement primaire de {110} a {100} on peut s'attendre a σα≈9. Une com-paraison des contraintes de Peierls avec des resultats de calculs utilisants des modeles elastiques ou atomistiques montre que seulement les derniers sont en etat de decrire quantitativement la situation experimentalle. In ionic crystals with the NaCl-structure the critical resolved shear stress for slip on {110} and {100} planes becomes s...

[1]  W. Skrotzki,et al.  Slip on {100} Planes in LiF , 1982, April 16.

[2]  P. W. Tasker,et al.  An atomistic calculation of extended planar defects in ionic crystals Application to stacking faults in the alkali halides , 1981 .

[3]  P. Haasen,et al.  Intrinsic Glide Resistance on {100} Planes in Alkali Halides , 1981, February 1.

[4]  C. So,et al.  The Core Structure of an Edge Dislocation in NaCl , 1980 .

[5]  M. Spendel,et al.  Plastic deformation of CoO single crystals , 1980 .

[6]  A. A. Urusovskaya,et al.  Thermal Activation Analysis of Plastic Deformation of PbS Single Crystals , 1979, April 16.

[7]  Tomoharu Yamada,et al.  Solution Hardening and Softening in KCl–KBr Single Crystals at Low Temperatures , 1978 .

[8]  C. Woo,et al.  The Peierls mechanism in MgO , 1977 .

[9]  P. C. Gehlen,et al.  Atomic simulation of the dislocation core structure and Peierls stress in alkali halide , 1976 .

[10]  Takayoshi Suzuki,et al.  Low-Temperature Deformation and Peierls Mechanism in NaCl , 1976 .

[11]  M. Norgett,et al.  Atomistic calculation of the core structure and Peierls energy of an (a/2) [110] edge dislocation in MgO , 1976 .

[12]  S. Schumann,et al.  Low-energy metastable autoionizing states in nitrogen, oxygen, and neon (*) , 1976 .

[13]  Takayoshi Suzuki,et al.  Low-Temperature Deformation and Dislocation Mechanism in LiF , 1975 .

[14]  T. Stoebe,et al.  Temperature dependence of yielding and work-hardening rates in magnesium oxide single crystals , 1974 .

[15]  E. Tabachnikova Temperature and Strain Rate Effects on Work-Hardening of KCl Single Crystals , 1974 .

[16]  B. Levine Bond susceptibilities and ionicities in complex crystal structures , 1973 .

[17]  B. Levine d-Electron Effects on Bond Susceptibilities and Ionicities , 1973 .

[18]  J. Gilman Hardness of pure alkali halides , 1973 .

[19]  A. Argon,et al.  Plastic deformation and strain hardening in pure Nacl at low temperatures , 1972 .

[20]  P. Haasen,et al.  Hydrostatic Pressure and Plastic Deformation of the Alkali Halides , 1969 .

[21]  G. Wagner,et al.  Atomistische Berechnung der Core-Struktur, Core-Energie und Peierls-Spannung einer Stufenversetzung in NaCl , 1968, December 1.

[22]  Frank Reginald Nunes Nabarro,et al.  Theory of crystal dislocations , 1967 .

[23]  J. A. Pask,et al.  Effect of Crystal Orientation on Plastic Deformation of Magnesium Oxide , 1963 .

[24]  V. Celli,et al.  Theory of Dislocation Mobility in Semiconductors , 1963 .

[25]  J. Gilman Plastic anisotropy of lif and other rocksalt-type crystals , 1959 .

[26]  H. B. Huntington,et al.  Dislocation Energies in NaCl , 1955 .