Digital holographic microscopy for live cell applications and technical inspection.

Digital holographic microscopy enables a quantitative phase contrast metrology that is suitable for the investigation of reflective surfaces as well as for the marker-free analysis of living cells. The digital holographic feature of (subsequent) numerical focus adjustment makes possible applications for multifocus imaging. An overview of digital holographic microscopy methods is described. Applications of digital holographic microscopy are demonstrated by results obtained from livings cells and engineered surfaces.

[1]  E. Cuche,et al.  Spatial filtering for zero-order and twin-image elimination in digital off-axis holography. , 2000, Applied optics.

[2]  Michael Unser,et al.  Autofocus for digital Fresnel holograms by use of a Fresnelet-sparsity criterion. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[3]  P. Ferraro,et al.  Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction. , 2006, Optics letters.

[4]  Werner P. O. Jueptner,et al.  Methods of digital holography: a comparison , 1997, Other Conferences.

[5]  E. Cuche,et al.  Cell refractive index tomography by digital holographic microscopy. , 2006, Optics letters.

[6]  Christian Depeursinge,et al.  Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram. , 2006, Optics express.

[7]  Catherine Yourassowsky,et al.  Focus plane detection criteria in digital holography microscopy by amplitude analysis. , 2006, Optics express.

[8]  J. Garcia-Sucerquia,et al.  Digital off-axis holography without zero-order diffraction via phase manipulation , 2007 .

[9]  T. Maiman Stimulated Optical Radiation in Ruby , 1960, Nature.

[10]  Gert von Bally Coherent Imaging Metrology in Life Sciences and Clinical Diagnostics , 2002 .

[11]  Etienne Cuche,et al.  Shot-noise influence on the reconstructed phase image signal-to-noise ratio in digital holographic microscopy. , 2006, Applied optics.

[12]  P. Ferraro,et al.  Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram , 2007 .

[13]  E. Cuche,et al.  Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms. , 1999, Applied optics.

[14]  E. Cuche,et al.  Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy. , 2005, Optics express.

[15]  Werner Hentschel,et al.  Laser metrology — a diagnostic tool in automotive development processes , 2000 .

[16]  Baozhen Ge,et al.  Elimination of zero-order diffraction in digital off-axis holography , 2004 .

[17]  Patrik Langehanenberg,et al.  Autofocus algorithms for digital-holographic microscopy , 2007, European Conference on Biomedical Optics.

[18]  H Ohzu,et al.  Hybrid holographic microscopy free of conjugate and zero-order images. , 1999, Applied optics.

[19]  Emmett N. Leith,et al.  Wavefront Reconstruction with Continuous-Tone Objects* , 1963 .

[20]  D. Gabor A New Microscopic Principle , 1948, Nature.

[21]  Gabriel Popescu,et al.  Hilbert phase microscopy for investigating fast dynamics in transparent systems. , 2005, Optics letters.

[22]  M. Unser,et al.  Complex-wave retrieval from a single off-axis hologram. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[23]  Jianqiang Zhu,et al.  Elimination of zero-order diffraction in digital holography , 2002 .

[24]  R. Mittra,et al.  Digital and optical reconstruction of images from suboptical diffraction patterns. , 1974, Applied optics.

[25]  U. Schnars,et al.  Direct recording of holograms by a CCD target and numerical reconstruction. , 1994, Applied optics.

[26]  Jürgen Schnekenburger,et al.  Protein tyrosine phosphatase κ and SHP-1 are involved in the regulation of cell-cell contacts at adherens junctions in the exocrine pancreas , 2005, Gut.

[27]  K. Schütze,et al.  New Methods for Marker‐free Live Cell and Tumor Analysis (MIKROSO) , 2006 .

[28]  Daniel Carl,et al.  Parameter-optimized digital holographic microscope for high-resolution living-cell analysis. , 2004, Applied optics.

[29]  H. Elsässer,et al.  Establishment and characterisation of two cell lines with different grade of differentiation derived from one primary human pancreatic adenocarcinoma , 1992, Virchows Archiv. B, Cell pathology including molecular pathology.

[30]  Emmett N. Leith,et al.  Wavefront Reconstruction with Diffused Illumination and Three-Dimensional Objects* , 1964 .

[31]  Gabriel Popescu,et al.  Erythrocyte structure and dynamics quantified by Hilbert phase microscopy. , 2005, Journal of biomedical optics.

[32]  I. Yamaguchi,et al.  Image formation in phase-shifting digital holography and applications to microscopy. , 2001, Applied optics.

[33]  Chun-Min Lo,et al.  High-resolution quantitative phase-contrast microscopy by digital holography. , 2005, Optics express.

[34]  Christian Depeursinge,et al.  Influence of shot noise on phase measurement accuracy in digital holographic microscopy. , 2007, Optics express.

[35]  Pietro Ferraro,et al.  Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging. , 2003, Applied optics.

[36]  G von Bally,et al.  Gastric wall elasticity assessed by dynamic holographic endoscopy: ex vivo investigations in the porcine stomach. , 2001, Gastrointestinal endoscopy.

[37]  Daniel Carl,et al.  Modular digital holographic microscopy system for marker free quantitative phase contrast imaging of living cells , 2006, SPIE Photonics Europe.

[38]  Etienne Cuche,et al.  Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation. , 2006, Applied optics.

[39]  P. Marquet,et al.  Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba. , 2006, Optics express.

[40]  D Dirksen,et al.  Endoscopic double-pulse electronic-speckle-pattern interferometer for technical and medical intracavity inspection. , 2000, Applied optics.

[41]  Daniel Carl,et al.  Investigation of living pancreas tumor cells by digital holographic microscopy. , 2006, Journal of biomedical optics.

[42]  H J Tiziani,et al.  Pulsed digital holography for deformation measurements on biological tissues. , 2000, Applied optics.

[43]  Gabriel Popescu,et al.  Diffraction phase and fluorescence microscopy. , 2006, Optics express.

[44]  E. Cuche,et al.  Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. , 2005, Optics letters.

[45]  E. Leith,et al.  Reconstructed Wavefronts and Communication Theory , 1962 .

[46]  K. Badizadegan,et al.  Live cell refractometry using microfluidic devices. , 2006, Optics letters.

[47]  I. Yamaguchi,et al.  Phase-shifting digital holography. , 1997, Optics letters.

[48]  C. Depeursinge,et al.  Analysis of cellular structure and dynamics with digital holographic microscopy , 2007, European Conference on Biomedical Optics.

[49]  Karl A. Stetson,et al.  Interferometric Vibration Analysis by Wavefront Reconstruction , 1965 .

[50]  Etienne Cuche,et al.  Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.