Mapping non-conventional extensions of genetic programming

Conventional genetic programming research excludes memory and iteration. We have begun an extensive analysis of the space through which GP or other unconventional AI approaches search and extend it to consider explicit program stop instructions (T8), including Markov analysis and any time models (T7). We report halting probability, run time and functionality (including entropy of binary functions) of both halting and anytime programs. Irreversible Turing complete program fitness landscapes, even with halt, scale poorly however loops lock-in variation allowing more interesting functions.

[1]  Riccardo Poli,et al.  On Turing complete T7 and MISC F--4 program fitnes landscapes , 2005, Theory of Evolutionary Algorithms.

[2]  Riccardo Poli,et al.  Efficient Markov Chain Model of Machine Code Program Execution and Halting , 2007 .

[3]  Jason M. Daida,et al.  Analysis of single-node (building) blocks in genetic programming , 1999 .

[4]  Wolfgang Banzhaf,et al.  Genetic Programming: An Introduction , 1997 .

[5]  David E. Goldberg,et al.  BUILDING-BLOCK SUPPLY IN GENETIC PROGRAMMING , 2003 .

[6]  Rolf Herken,et al.  The Universal Turing Machine: A Half-Century Survey , 1992 .

[7]  Peter Nordin,et al.  Genetic programming - An Introduction: On the Automatic Evolution of Computer Programs and Its Applications , 1998 .

[8]  William B. Langdon,et al.  Convergence Rates For The Distribution Of Program Outputs , 2002, GECCO.

[9]  William B. Langdon Mapping Non-conventional Extensions of Genetic Programming , 2006, UC.

[10]  Cristian S. Calude,et al.  Computing a Glimpse of Randomness , 2002, Exp. Math..

[11]  Riccardo Poli,et al.  Using Schema Theory To Explore Interactions Of Multiple Operators , 2002, GECCO.

[12]  William B. Langdon,et al.  How Many Good Programs are There? How Long are They? , 2002, FOGA.

[13]  G. Chaitin An algebraic equation for the halting probability , 1988 .

[14]  Justinian Rosca,et al.  A PROBABILISTIC MODEL OF SIZE DRIFT , 2003 .

[15]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[16]  William A. Greene Schema Disruption in Chromosomes That Are Structured as Binary Trees , 2004, GECCO.

[17]  William B. Langdon,et al.  Convergence of Program Fitness Landscapes , 2003, GECCO.

[18]  Riccardo Poli,et al.  The Halting Probability in Von Neumann Architectures , 2006, EuroGP.

[19]  Riccardo Poli,et al.  Foundations of Genetic Programming , 1999, Springer Berlin Heidelberg.

[20]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[21]  Maarten Keijzer,et al.  The Push3 execution stack and the evolution of control , 2005, GECCO '05.

[22]  Astro Teller,et al.  GENETIC PROGRAMMING, INDEXED MEMORY, THE HALTING PROBLEM, AND OTHER CURIOSITIES , 2007 .