The knowledge collective: a multi-layer, multi-agent framework for information management in an intelligent knowledge base

The Knowledge Collective (TKC) is a multi-layer, multi-agent framework for information management in an intelligent knowledge base that supports a collection of agents called MicroDroids. The MicroDroids provide information management capabilities through a variety of interfaces for experts, human users, and software components. This information is stored in a variety of internal structures (e.g., Java objects, rules, relational data). The main concept is that information is stored in a format that is natural to the type of information being maintained (e.g., data, metadata, ontologies, concept maps, lexicons, rules). The Knowledge Collective makes ontology-based information accessible to many end users, maintainable by domain experts and reusable by many users across many applications without their needing to know how or where the information is stored. The Knowledge Collective's first use is in version 4 of CIRCSIM-Tutor, an Intelligent Tutoring System developed by Martha Evens and her group at the Illinois Institute of Technology in Chicago, IL. The uniqueness of The Knowledge Collective is in the combination of technologies for problem solving and the use of a multi-agent system where each MicroDroid manages its own information and works with other MicroDroids to solve specific problems. Each MicroDroid reasons about the information it is managing using an Ontology Inference Engine (ONTIE) that is capable of combining all of its internal information structures for the purpose of access, maintenance and problem solving, especially involving Qualitative Reasoning.

[1]  Kenneth D. Forbus Qualitative Process Theory , 1984, Artif. Intell..

[2]  Ed Burnette,et al.  Eclipse in action : a guide for Java developers , 2003 .

[3]  K. Milzner,et al.  Incremental Learning for Improved Decision Support in Knowledge Based Design Systems , 1992 .

[4]  Kenneth D. Forbus,et al.  Qualitative Modeling in Education , 2004, AI Mag..

[5]  Ryszard S. Michalski,et al.  A theory and methodology of inductive learning , 1993 .

[6]  Bruce I. Mills,et al.  Using the Atlas Planning Engine to Drive an Intelligent Tutoring System: CIRCSIM-Tutor Version 3 , 2001, FLAIRS.

[7]  Ralph Johnson,et al.  design patterns elements of reusable object oriented software , 2019 .

[8]  David Frankel,et al.  Model Driven Architecture: Applying MDA to Enterprise Computing , 2003 .

[9]  Yuemei Zhang Knowledge-based discourse generation for an intelligent tutoring system , 1992 .

[10]  R. Schank Tell Me a Story: A New Look at Real and Artificial Memory , 1991 .

[11]  Michael R. Genesereth,et al.  Software agents , 1994, CACM.

[12]  Ramzan Khuwaja,et al.  Architecture of CIRCSIM-Tutor (v.3): a smart cardiovascular physiology tutor , 1994, Proceedings of IEEE Symposium on Computer-Based Medical Systems (CBMS).

[13]  Anthony G. Cohn,et al.  Qualitative Reasoning , 1987, Advanced Topics in Artificial Intelligence.

[14]  Michael Glass,et al.  Broadening input understanding in a language-based intelligent tutoring system , 1999 .

[15]  William A. Giovinazzo Object-Oriented Data Warehouse Design: Building A Star Schema , 2000 .

[16]  Brian Falkenhainer,et al.  Setting up Large-Scale Qualitative Models , 1988, AAAI.

[17]  Pat Langley,et al.  Learning, development, and production systems , 1987 .

[18]  Nicolaas Mars,et al.  STRUCTURING DESIGN KNOWLEDGE ON THE BASIS OF GENERIC COMPONENTS , 1992 .

[19]  Ian Horrocks,et al.  OIL in a Nutshell , 2000, EKAW.

[20]  Will Iverson Hibernate: A J2ee(tm) Developer's Guide , 2004 .

[21]  Daniel L. Rubin,et al.  Making Biomedical Ontologies and Ontology Repositories Work , 2004, IEEE Intell. Syst..

[22]  AlonsoEduardo AI and agents , 2002 .

[23]  Martha W. Evens,et al.  Handling ill-formed natural language input for an intelligent tutoring system , 1990 .

[24]  Barbara Messing,et al.  An Introduction to MultiAgent Systems , 2002, Künstliche Intell..

[25]  Martha W. Evens,et al.  Natural language interface for an expert system , 1998 .

[26]  Arthur C. Graesser,et al.  Is it an Agent, or Just a Program?: A Taxonomy for Autonomous Agents , 1996, ATAL.

[27]  Chung Hee Lee,et al.  Interleaved Syntax and Semantic Processing for CIRCSIM-Tutor Dialogues , 2003, MAICS.

[28]  Ramzan Khuwaja,et al.  A model of tutoring: facilitating knowledge integration using multiple models of the domain , 1995 .

[29]  R. H. Sturges,et al.  A computational model for conceptual design based on function logic , 1992 .

[30]  Kenneth D. Forbus,et al.  Building Problem Solvers , 1993 .

[31]  Roger Tagg,et al.  Intelligent Software Agents , 2005, Encyclopedia of Information Science and Technology.

[32]  Ronald G. Ross,et al.  Principles of the business rule approach: Ronald G. Ross, Addison-Wesley Information Technology Series, February 2003, 256pp., price £30.99, ISBN 0-201-78893-4 , 2004, Int. J. Inf. Manag..

[33]  Chung Hee Lee,et al.  Building an Ontology for CIRCSIM-Tutor , 2002 .

[34]  FIPA Abstract Architecture Specification , 2002 .

[35]  Frank Budinsky,et al.  Eclipse Modeling Framework , 2003 .

[36]  Chong Woo Woo,et al.  Instructional planning in an intelligent tutoring system: combining global lesson plans with local discourse control , 1992 .

[37]  Jacques Ferber,et al.  Multi-agent systems - an introduction to distributed artificial intelligence , 1999 .

[38]  John F. Sowa,et al.  Knowledge Representation and Reasoning , 2000 .

[39]  Vimla L. Patel,et al.  A Model of Tutoring: Based on the Behavior of Effective Human Tutors , 1996, Intelligent Tutoring Systems.

[40]  David Marco,et al.  Building and Managing the Meta Data Repository: A Full Lifecycle Guide , 2000 .

[41]  Byung-In Cho,et al.  DYNAMIC PLANNING MODELS TO SUPPORT CURRICULUM PLANNING AND MULTIPLE TUTORING PROTOCOLS IN INTELLIGENT TUTORING SYSTEMS , 2000 .

[42]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[43]  Daniel G. Bobrow,et al.  Qualitative Reasoning about Physical Systems: An Introduction , 1984, Artif. Intell..

[44]  Ramzan Khuwaja,et al.  Knowledge Representation for an Intelligent Tutoring System Based on a Multilevel Causal Model , 1992, Intelligent Tutoring Systems.

[45]  Michael Glass,et al.  Learning from a Computer Tutor with Natural Language Capabilities , 2003, Interact. Learn. Environ..

[46]  Peter Struss,et al.  Qualitative Reasoning , 1997, The Computer Science and Engineering Handbook.

[47]  Ivan Bratko,et al.  KARDIO - a study in deep and qualitative knowledge for expert systems , 1989 .

[48]  Ernest Friedman-Hill,et al.  Jess in action : rule-based systems in Java , 2003 .

[49]  D A Waterman An Introduction to Production Systems , 1976 .

[50]  Julie A. Adams,et al.  Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence , 2001, AI Mag..

[51]  Henrik Eriksson,et al.  The evolution of Protégé: an environment for knowledge-based systems development , 2003, Int. J. Hum. Comput. Stud..

[52]  Antonio Badia,et al.  Ontologies , 2001, Springer Berlin Heidelberg.

[53]  Joel A. Michael,et al.  Dynamic instructional planning for an intelligent physiology tutoring system , 1991, [1991] Computer-Based Medical Systems@m_Proceedings of the Fourth Annual IEEE Symposium.

[54]  Martha W. Evens,et al.  The Knowledge Collective Framework Makes Ontology Based Information Accessible, Maintainable, and Reusable , 2007, Ontologies.

[55]  K. Haase Java Message Service API Tutorial , 2002 .

[56]  Joel A. Michael,et al.  Cricism-Tutor: An Intelligent Tutoring System for Circulatory Physiology , 1989, ICCAL.

[57]  Richard Fikes,et al.  The Ontolingua Server: a tool for collaborative ontology construction , 1997, Int. J. Hum. Comput. Stud..

[58]  Lawrence W. Barsalou,et al.  Discrimination Nets as Psychological Models , 1984, Cogn. Sci..

[59]  Eugene Charniak,et al.  Artificial Intelligence Programming , 1987 .

[60]  Paul Taylor,et al.  Knowledge management with patterns , 2003, CACM.

[61]  Reva Freedman,et al.  Interaction of discourse planning, instructional planning and dialogue management in an interactive tutoring system , 1996 .

[62]  Benjamin Kuipers,et al.  Commonsense Reasoning about Causality: Deriving Behavior from Structure , 1984, Artif. Intell..

[63]  Martha W. Evens,et al.  Lexical-Semantic Relations: A Comparative Survey , 1981 .

[64]  Michael D. Rychener,et al.  Research in Expert Systems for Engineering Design , 1988 .

[65]  M. Evens,et al.  Extending a knowledge base to support explanations , 1990, [1990] Proceedings. Third Annual IEEE Symposium on Computer-Based Medical Systems.

[66]  Alex M. Andrew Ontologies: A Silver Bullet for Knowledge Management and Electronic Commerce , 2004 .