The Theory of Finitely Supported Structures and Choice Forms
暂无分享,去创建一个
[1] J. Barwise. Admissible Sets and Structures: An Approach to Definability Theory , 1976 .
[2] Mark R. Shinwell. The fresh approach: functional programming with names and binders , 2005 .
[3] P. Howard,et al. Consequences of the axiom of choice , 1998 .
[4] A. Tarski,et al. What are logical notions , 1986 .
[5] Norbert Brunner. Amorphe Potenzen kompakter Räume , 1984, Arch. Math. Log..
[6] A. Mostowski,et al. Über die Unabhangigkeit des Auswahlaxioms und Einiger seiner Folgerungen , 1939 .
[7] Combinatorial Set Theory , 2011 .
[8] Andrew M. Pitts,et al. Nominal Sets: Names and Symmetry in Computer Science , 2013 .
[9] Slawomir Lasota,et al. Automata with Group Actions , 2011, 2011 IEEE 26th Annual Symposium on Logic in Computer Science.
[10] Gabriel Ciobanu,et al. Fuzzy sets within Finitely Supported Mathematics , 2018, Fuzzy Sets Syst..
[11] Robin Gandy,et al. Church's Thesis and Principles for Mechanisms , 1980 .
[12] The independence of various definitions of finiteness , 1958 .
[13] A. Fraenkel,et al. Zu den Grundlagen der Cantor-Zermeloschen Mengenlehre , 1922 .
[14] Horst Herrlich,et al. Axiom of Choice , 2006 .
[15] Gabriel Ciobanu,et al. Abstract Interpretations in the Framework of Invariant Sets , 2016, Fundam. Informaticae.
[16] Daniela Luana Petrisan,et al. Investigations into Algebra and Topology over Nominal Sets , 2012 .
[17] Felix . Klein,et al. Vergleichende Betrachtungen über neuere geometrische Forschungen , 1893 .
[18] Andrew M. Pitts,et al. A New Approach to Abstract Syntax with Variable Binding , 2002, Formal Aspects of Computing.
[19] Gabriel Ciobanu,et al. Finitely Supported Mathematics , 2016, Springer International Publishing.