Good and bad tetrads in f(T) gravity

We investigate the importance of choosing good tetrads for the study of the field equations of $f(T)$ gravity. It is well known that this theory is not invariant under local Lorentz transformations, and therefore the choice of tetrad plays a crucial role in such models. Different tetrads will lead to different field equations which in turn have different solutions. We suggest to speak of a good tetrad if it imposes no restrictions on the form of $f(T)$. Employing local rotations, we construct good tetrads in the context of homogeneity and isotropy, and spherical symmetry, where we show how to find Schwarzschild-de Sitter solutions in vacuum. Our principal approach should be applicable to other symmetries as well.

[1]  K. Karami,et al.  QCD ghost f(T)-gravity model , 2012, 1202.2278.

[2]  K. Karami,et al.  Holographic f(T)-gravity model with power-law entropy correction , 2011, 1111.7269.

[3]  K. Karami,et al.  f(T) modified teleparallel gravity as an alternative for holographic and new agegraphic dark energy models , 2010, 1009.2459.

[4]  Xin-he Meng,et al.  Extended Birkhoff’s theorem in f(T) gravity , 2012, 1203.5890.

[5]  L. Iorio,et al.  Solar system constraints on f(T) gravity , 2012, 1203.5781.

[6]  Hongwei Yu,et al.  GÖDEL-TYPE UNIVERSES IN f(T) GRAVITY , 2012, 1203.2016.

[7]  M. Setare,et al.  Finite-time future singularities models in f(T) gravity , 2012, 1203.1315.

[8]  A. Benachour On f(R) theories equivalent to general relativity for a specific form of the Ricci scalar , 2012, 1202.3598.

[9]  M. Rodrigues,et al.  Anisotropic fluid for a set of non-diagonal tetrads in f(T) gravity , 2012, 1202.1147.

[10]  K. Karami,et al.  Generalized second law of thermodynamics in f(T) gravity , 2012, 1201.2511.

[11]  Puxun Wu,et al.  Cosmic acceleration and phantom crossing in f(T)-gravity , 2011, 1112.4700.

[12]  F. Darabi,et al.  f(T) cosmology via Noether symmetry , 2011, 1112.2824.

[13]  M. Rodrigues,et al.  Static anisotropic solutions in f(T) theory , 2011, 1109.0528.

[14]  Hao Wei,et al.  Constraining f(T) theories with the varying gravitational constant , 2011, 1108.0859.

[15]  R. Myrzakulov \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(T)$$\end{document} gravity and k-essence , 2010, General Relativity and Gravitation.

[16]  G. Nashed Exact spherically symmetric solutions in f(T) theory , 2011 .

[17]  Franco Fiorini,et al.  Spherically symmetric static spacetimes in vacuum f ( T ) gravity , 2011, 1109.4209.

[18]  C. Geng,et al.  THERMODYNAMICS OF COSMOLOGICAL HORIZONS IN F (T) GRAVITY , 2011, 1109.1694.

[19]  Hongwei Yu,et al.  The Stability of the Einstein static state in $f(T)$ gravity , 2011, 1108.5908.

[20]  M. Rodrigues,et al.  New static solutions in f(T) theory , 2011, 1108.2920.

[21]  S. Capozziello,et al.  Cosmography in f(T)-gravity , 2011, 1108.2789.

[22]  N. Tamanini,et al.  Existence of relativistic stars in f(T) gravity , 2011, 1107.4455.

[23]  Hongwei Yu,et al.  The growth of matter perturbations in f(T) gravity , 2011, 1204.2333.

[24]  Yi-Fu Cai,et al.  Matter bounce cosmology with the f(T) gravity , 2011, 1104.4349.

[25]  C. Deliduman,et al.  Absence of Relativistic Stars in f(T) Gravity , 2011, 1103.2225.

[26]  Franco Fiorini,et al.  Non-trivial frames for f(T) theories of gravity and beyond , 2011, 1103.0824.

[27]  Tower Wang Static Solutions with Spherical Symmetry in f(T) Theories , 2011, 1102.4410.

[28]  Rongjia Yang Conformal transformation in f(T) theories , 2010, 1010.1376.

[29]  Hongwei Yu,et al.  f(T) models with phantom divide line crossing , 2010, 1008.3669.

[30]  G. Bengochea Observational information for f(T) theories and Dark Torsion , 2010, 1008.3188.

[31]  E. Saridakis,et al.  Cosmological perturbations in f(T) gravity , 2010, 1008.1250.

[32]  Rongjia Yang New types of f(T) gravity , 2010, 1007.3571.

[33]  R. Myrzakulov Accelerating universe from F(T) gravity , 2010, 1006.1120.

[34]  Chung-Chi Lee,et al.  Equation of state for dark energy in $f(T)$ gravity , 2010, 1011.0508.

[35]  Q. Huang,et al.  Growth factor in $f(T)$ gravity , 2010, 1010.3512.

[36]  R. Myrzakulov,et al.  Accelerating cosmology in F(T) gravity with scalar field , 2010, 1006.3879.

[37]  Hongwei Yu,et al.  Observational constraints on f(T) theory , 2010, 1006.0674.

[38]  V. Faraoni Jebsen-Birkhoff theorem in alternative gravity , 2010, 1001.2287.

[39]  Franco Fiorini,et al.  Born-Infeld gravity in Weitzenböck spacetime , 2008, 0812.1981.

[40]  E. Barausse,et al.  Curvature singularities, tidal forces and the viability of Palatini f(R) gravity , 2007, 0712.1141.

[41]  S. Capozziello,et al.  Spherical symmetry in f(R)-gravity , 2007, 0709.0891.

[42]  K. Kainulainen,et al.  Spherically symmetric spacetimes in f(R) gravity theories , 2007, 0704.2729.