Highly uniform step and terrace structures on SiC(0001) surfaces

Highly uniform step and termination structures on 4H- and 6H-SiC(0001) surfaces have been prepared via moderate annealing in disilane. Atomic force microscopy and dark-field low-energy electron microscopy imaging indicate single-phase terminations separated solely by half-unit-cell-height steps, driven by stacking fault energy. The atomic structure of 4H-SiC(0001)-√3 × √3R30°-Si has been determined quantitatively by nanospot low-energy electron diffraction. The topmost stacking fault at the 4H surface has been found to be between the second and third bilayers.

[1]  Rudolf M. Tromp,et al.  Low-Energy Electron Microscopy , 1994, IBM J. Res. Dev..

[2]  John B. Pendry,et al.  Reliability factors for LEED calculations , 1980 .

[3]  M. Prutton,et al.  Low-energy electron diffraction , 1978 .

[4]  D. P. Woodruff The structure of surfaces: what do we know and what would we like to know? , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[5]  C. Berger,et al.  Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. , 2004, cond-mat/0410240.

[6]  H. L. Davis,et al.  Cu(100) multilayer relaxation , 1982 .

[7]  H. Morkoç,et al.  The effect of hydrogen etching on 6H-SiC studied by temperature-dependent current-voltage and atomic force microscopy , 2004 .

[8]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[9]  U. Starke,et al.  Structure and Morphology of 4 H-SiC Wafer Surfaces after H 2-Etching , .

[10]  John B. Pendry,et al.  Low-Energy Electron Diffraction , 1990 .

[11]  G. Kellogg,et al.  Local structural and compositional determination via electron scattering: Heterogeneous Cu(001)-Pd surface alloy , 2007 .

[12]  P. Krüger,et al.  Ab initio calculations of structural and electronic properties of 6H-SiC(0001) surfaces , 1997 .

[13]  K. Loh,et al.  Distinguishing the H3 and T4 silicon adatom model on 6H–SiC(0001) √3×√3R30° reconstruction by dynamic rocking beam approach , 2003 .

[14]  Yujie Han,et al.  Atomic models of (∛×∛)R30° reconstruction on hexagonal 6H–SiC(0001) surface , 2001 .

[15]  K. Oura,et al.  Structural Analysis of 6H–SiC(0001)√3×√3 Reconstructed Surface , 2000 .

[16]  S. Hoffmann,et al.  Photoelectron diffraction study of the 6H-SiC(0001) 3×3 R30° reconstruction , 2005 .

[17]  U. Starke,et al.  STACKING TRANSFORMATION FROM HEXAGONAL TO CUBIC SIC INDUCED BY SURFACE RECONSTRUCTION : A SEED FOR HETEROSTRUCTURE GROWTH , 1999 .

[18]  U. Starke,et al.  Structure and Morphology of 4H-SiC Wafer Surfaces after H2-Etching , 2005 .

[19]  M. Shur,et al.  Properties of advanced semiconductor materials : GaN, AlN, InN, BN, SiC, SiGe , 2001 .

[20]  A. Locatelli,et al.  Spectromicroscopy of single and multilayer graphene supported by a weakly interacting substrate , 2008, 0806.0355.

[21]  Northrup,et al.  Theory of the adatom-induced reconstruction of the SiC(0001) sqrt 3 x sqrt 3 surface. , 1995, Physical review. B, Condensed matter.

[22]  J. Demuth,et al.  Analysis of low-energy-electron-diffraction intensity spectra for (001), (110), and (111) nickel , 1975 .

[23]  M. Altman Trends in low energy electron microscopy , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[24]  Michel A. Van Hove,et al.  Surface Crystallography by LEED , 1979 .

[25]  E. Bauer,et al.  Low energy electron microscopy , 1994 .

[26]  A. Catellani,et al.  Surface-induced stacking transition at SiC(0001) , 2002 .

[27]  T. Argunova,et al.  ( 3 × 3 ) R 30 ° reconstruction of the 6 H − SiC (0001) surface: A simple T 4 Si adatom structure solved by grazing-incidence x-ray diffraction , 1999 .

[28]  W. J. Choyke,et al.  Silicon carbide : recent major advances , 2004 .

[29]  J. Hannon,et al.  Thermodynamics and kinetics of graphene growth on SiC(0001). , 2009, Physical review letters.