Nonlinear gyrokinetic theory for finite‐beta plasmas

A self‐consistent and energy‐conserving set of nonlinear gyrokinetic equations, consisting of the averaged Vlasov and Maxwell’s equations for finite‐beta plasmas, is derived. The method utilized in the present investigation is based on the Hamiltonian formalism and Lie transformation. The resulting formulation is valid for arbitrary values of k⊥ρi and, therefore, is most suitable for studying linear and nonlinear evolution of microinstabilities in tokamak plasmas as well as other areas of plasma physics where the finite Larmor radius effects are important. Because the underlying Hamiltonian structure is preserved in the present formalism, these equations are directly applicable to numerical studies based on the existing gyrokinetic particle simulation techniques.

[1]  J. Krommes,et al.  Nonlinear gyrokinetic equations , 1983 .

[2]  Thomas M. Antonsen,et al.  Nonlinear reduced fluid equations for toroidal plasmas , 1984 .

[3]  M. S. Chance,et al.  Hamiltonian guiding center drift orbit calculation for plasmas of arbitrary cross section , 1984 .

[4]  W. Tang Microinstability theory in tokamaks , 1978 .

[5]  P. Liewer Measurements of microturbulence in tokamaks and comparisons with theories of turbulence and anomalous transport , 1985 .

[6]  H. R. Strauss,et al.  Dynamics of high tokamaks , 1977 .

[7]  C. Nielson,et al.  Particle-code models in the nonradiative limit , 1976 .

[8]  Robert G. Littlejohn,et al.  Hamiltonian formulation of guiding center motion , 1981 .

[9]  W. Tang,et al.  Nonlinear evolution of drift instabilities in the presence of collisions , 1986 .

[10]  A. Hasegawa,et al.  Finite‐Larmor‐radius magnetohydrodynamic equations for microturbulence , 1983 .

[11]  Robert G. Littlejohn,et al.  A guiding center Hamiltonian: A new approach , 1979 .

[12]  W. Lee,et al.  Gyrokinetic particle simulation of ion temperature gradient drift instabilities , 1988 .

[13]  J. Taylor,et al.  Stability of general plasma equilibria - I formal theory , 1968 .

[14]  R. Hazeltine,et al.  Hamiltonian four-field model for nonlinear tokamak dynamics , 1987 .

[15]  E. Frieman,et al.  Drift Instabilities in General Magnetic Field Configurations , 1968 .

[16]  W. Lee,et al.  Gyrokinetic Particle Simulation Model , 1987 .

[17]  Y. C. Lee,et al.  Collisionless electron temperature gradient instability , 1987 .

[18]  D. Choi,et al.  Low frequency gyrokinetics in general plasma equilibrium in a hamiltonian formulation , 1985 .

[19]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[20]  W. W. Lee,et al.  Gyrokinetic approach in particle simulation , 1981 .

[21]  Semicollisional drift‐tearing modes in toroidal plasmas , 1986 .

[22]  R. Littlejohn Hamiltonian perturbation theory in noncanonical coordinates , 1982 .

[23]  E. Frieman,et al.  A new Hamiltonian method in nonlinear gyrokinetic theory , 1985 .

[24]  R. Littlejohn Linear relativistic gyrokinetic equation , 1984 .

[25]  J. Cary,et al.  Noncanonical Hamiltonian mechanics and its application to magnetic field line flow , 1983 .

[26]  E. Frieman,et al.  Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria , 1981 .