Identification of fuzzy systems using a continuous ant colony algorithm

A continuous ant colony algorithm is first proposed to identify fuzzy systems. It is used to construct five fuzzy systems to approximate nonlinear functions of one, two, and three variables. The effect of algorithm parameters on the approximation error is studied. A comparative analysis with other identification algorithms showed an advantage of the proposed algorithm.

[1]  Wen-June Wang,et al.  Function approximation via particular input space partition and region-based exponential membership functions , 2004, Fuzzy Sets Syst..

[2]  A. S. Vostrikov,et al.  Controller synthesis for automatic control systems: State and prospects , 2010 .

[3]  Jorge Casillas,et al.  Learning cooperative linguistic fuzzy rules using the best–worst ant system algorithm: Research Articles , 2005 .

[4]  Jorge Casillas,et al.  Quick Design of Fuzzy Controllers With Good Interpretability in Mobile Robotics , 2007, IEEE Transactions on Fuzzy Systems.

[5]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[6]  Wei-Yen Wang,et al.  A Novel Fuzzy Ant Colony System for Parameter Determination of Fuzzy Controllers , 2009 .

[7]  Chia-Feng Juang,et al.  Ant Colony Optimization Incorporated With Fuzzy Q-Learning for Reinforcement Fuzzy Control , 2009, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[8]  Dimitri A. Lisin,et al.  Optimal function approximation using fuzzy rules , 1999, 18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.99TH8397).

[9]  Marco Dorigo,et al.  Ant colony optimization for continuous domains , 2008, Eur. J. Oper. Res..

[10]  Jorge Casillas,et al.  Learning cooperative linguistic fuzzy rules using the best–worst ant system algorithm , 2005 .

[11]  Mohammad Teshnehlab,et al.  Novel Hybrid Learning Algorithms for Tuning ANFIS Parameters Using Adaptive Weighted PSO , 2007, 2007 IEEE International Fuzzy Systems Conference.

[12]  P. A. Dudin,et al.  Parametric fuzzy model identification based on a hybrid ant colony algorithm , 2008 .

[13]  Chia-Feng Juang,et al.  Fuzzy systems design by clustering-aided ant colony optimization for plant control , 2007, Int. J. Gen. Syst..