Comparative proteomic analysis of male and female venoms from the Cuban scorpion Rhopalurus junceus.

[1]  Ernesto Ortiz,et al.  Scorpion venom components as potential candidates for drug development , 2014, Toxicon.

[2]  Yingliang Wu,et al.  Proteomic analysis of the venom from the scorpion Mesobuthus martensii. , 2014, Journal of proteomics.

[3]  L. Possani,et al.  A K+ channel blocking peptide from the Cuban scorpion Rhopalurus garridoi , 2014, Peptides.

[4]  R. Carvalho,et al.  Involvement of Renal Corpuscle microRNA Expression on Epithelial-to-Mesenchymal Transition in Maternal Low Protein Diet in Adult Programmed Rats , 2013, PloS one.

[5]  L. Possani,et al.  Scorpion beta-toxins and voltage-gated sodium channels: interactions and effects. , 2013, Frontiers in bioscience.

[6]  L. Possani,et al.  The Cuban scorpion Rhopalurus junceus (Scorpiones, Buthidae): component variations in venom samples collected in different geographical areas , 2013, Journal of Venomous Animals and Toxins including Tropical Diseases.

[7]  M. Gurevitz Mapping of scorpion toxin receptor sites at voltage-gated sodium channels. , 2012, Toxicon : official journal of the International Society on Toxinology.

[8]  A. Herrera-Estrella,et al.  Global Transcriptome Analysis of the Scorpion Centruroides noxius: New Toxin Families and Evolutionary Insights from an Ancestral Scorpion Species , 2012, PloS one.

[9]  V. Quintero-Hernández,et al.  Gene cloning and functional characterization of four novel antimicrobial-like peptides from scorpions of the family Vaejovidae , 2012, Peptides.

[10]  L. Possani,et al.  Biochemical and molecular characterization of the venom from the Cuban scorpion Rhopalurus junceus. , 2011, Toxicon : official journal of the International Society on Toxinology.

[11]  H. O. D. op den Camp,et al.  Differences in venom toxicity and antigenicity between females and males Tityus nororientalis (Buthidae) scorpions , 2010, Journal of venom research.

[12]  Li Wenxin,et al.  Comparative venom gland transcriptome analysis of the scorpion Lychas mucronatus reveals intraspecific toxic gene diversity and new venomous components , 2010, BMC Genomics.

[13]  Yingliang Wu,et al.  Transcriptome analysis of the venom gland of the scorpion Scorpiops jendeki: implication for the evolution of the scorpion venom arsenal , 2009, BMC Genomics.

[14]  Luciano P. Silva,et al.  Mass spectrometry analysis, amino acid sequence and biological activity of venom components from the Brazilian scorpion Opisthacanthus cayaporum. , 2008, Toxicon : official journal of the International Society on Toxinology.

[15]  R. C. Rodríguez de la Vega,et al.  Overview of scorpion toxins specific for Na+ channels and related peptides: biodiversity, structure-function relationships and evolution. , 2005, Toxicon : official journal of the International Society on Toxinology.

[16]  K. Hahm,et al.  Antibiotic activity and structural analysis of the scorpion-derived antimicrobial peptide IsCT and its analogs. , 2004, Biochemical and biophysical research communications.

[17]  K. Sugase,et al.  Solution structure of IsTX. A male scorpion toxin from Opisthacanthus madagascariensis (Ischnuridae). , 2004, European journal of biochemistry.

[18]  R. C. Rodríguez de la Vega,et al.  Current views on scorpion toxins specific for K+-channels. , 2004, Toxicon : official journal of the International Society on Toxinology.

[19]  E. Wanke,et al.  Proteomics of the venom from the Amazonian scorpion Tityus cambridgei and the role of prolines on mass spectrometry analysis of toxins. , 2004, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[20]  G A Gutman,et al.  A unified nomenclature for short-chain peptides isolated from scorpion venoms: alpha-KTx molecular subfamilies. , 1999, Trends in pharmacological sciences.

[21]  M. Delepierre,et al.  Scorpion toxins specific for Na+-channels. , 1999, European journal of biochemistry.