On dynamics of a two-qubit coherent feedback network driven by two photons

The purpose of this paper is to study the dynamics of a quantum coherent feedback network composed of two two-level systems (qubits) driven by two counter-propagating photons. The coherent feedback network is a marginally stable system, and the spectral entanglement of photons could be enhanced as a consequence of the continuing two-photon interaction inside the feedback loop. By means of quantum stochastic calculus and the input-output framework, the analytic form of the steady-state output field states are derived in the Heisenberg picture for the first time. Based on the analytic form, significant enhancement of photon-photon interaction can be observed. In particular, we demonstrate that the famous Hong-Ou-Mandel effect can be created using this coherent feedback structure. The proposed framework is also applicable in the single-photon scenario.

[1]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[2]  Ian R. Petersen,et al.  The Kalman Decomposition for Linear Quantum Systems , 2018, IEEE Transactions on Automatic Control.

[3]  Joshua Combes,et al.  Passive CPHASE Gate via Cross-Kerr Nonlinearities. , 2016, Physical review letters.

[4]  B. Muzykantskii,et al.  ON QUANTUM NOISE , 1995 .

[5]  Mazyar Mirrahimi,et al.  Stabilization of a Delayed Quantum System: The Photon Box Case-Study , 2010, IEEE Transactions on Automatic Control.

[6]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[7]  Bo Qi A two-step strategy for stabilizing control of quantum systems with uncertainties , 2013, Autom..

[8]  Guofeng Zhang,et al.  Continuous-Mode MultiPhoton Filtering , 2016, SIAM J. Control. Optim..

[9]  Robin L. Hudson,et al.  Quantum Ito's formula and stochastic evolutions , 1984 .

[10]  Huaixiu Zheng,et al.  Persistent quantum beats and long-distance entanglement from waveguide-mediated interactions. , 2012, Physical review letters.

[11]  Daniel J. Gauthier,et al.  Waveguide QED: Many-body bound-state effects in coherent and Fock-state scattering from a two-level system , 2010, 1009.5325.

[12]  Matthew R. James,et al.  The Series Product and Its Application to Quantum Feedforward and Feedback Networks , 2007, IEEE Transactions on Automatic Control.

[13]  Monique Chyba,et al.  Time-Minimal Control of Dissipative Two-Level Quantum Systems: The Generic Case , 2008, IEEE Transactions on Automatic Control.

[14]  Hendra Ishwara Nurdin,et al.  Structures and Transformations for Model Reduction of Linear Quantum Stochastic Systems , 2013, IEEE Transactions on Automatic Control.

[15]  Xiaoting Wang,et al.  Analysis of Lyapunov Method for Control of Quantum States , 2010, IEEE Transactions on Automatic Control.

[16]  Martin Leib,et al.  Single-photon transistor in circuit quantum electrodynamics. , 2012, Physical review letters.

[17]  M.R. James,et al.  $H^{\infty}$ Control of Linear Quantum Stochastic Systems , 2008, IEEE Transactions on Automatic Control.

[18]  Xiang Zhang,et al.  Nonlinear quantum optics in a waveguide: distinct single photons strongly interacting at the single atom level. , 2011, Physical review letters.

[19]  Valerio Scarani,et al.  Efficient excitation of a two-level atom by a single photon in a propagating mode , 2010, 1010.4661.

[20]  Matti Laakso,et al.  Scattering of two photons from two distant qubits: exact solution. , 2014, Physical review letters.

[21]  Matthew R. James,et al.  On the Response of Quantum Linear Systems to Single Photon Input Fields , 2012, IEEE Transactions on Automatic Control.

[22]  Roger W. Brockett,et al.  Finite Controllability of Infinite-Dimensional Quantum Systems , 2010, IEEE Transactions on Automatic Control.

[23]  D. E. Chang,et al.  A single-photon transistor using nanoscale surface plasmons , 2007, 0706.4335.

[24]  Yao-Lung L. Fang,et al.  Waveguide QED: Power spectra and correlations of two photons scattered off multiple distant qubits and a mirror , 2015, 1502.03803.

[25]  Saverio Bolognani,et al.  Engineering Stable Discrete-Time Quantum Dynamics via a Canonical QR Decomposition , 2009, IEEE Transactions on Automatic Control.

[26]  Collett,et al.  Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. , 1985, Physical review. A, General physics.

[27]  Daniel J. Brod,et al.  Two photons co- and counterpropagating through N cross-Kerr sites , 2016, 1604.03914.

[28]  Guofeng Zhang,et al.  On the Response of a Two-Level System to Two-Photon Inputs , 2018, SIAM J. Control. Optim..

[29]  Matthew R. James,et al.  Quantum feedback networks and control: A brief survey , 2012, 1201.6020.

[30]  Valerio Scarani,et al.  Two photons on an atomic beam splitter: Nonlinear scattering and induced correlations , 2016 .

[31]  Ofer Firstenberg,et al.  Colloquium: Strongly interacting photons in one-dimensional continuum , 2016, 1603.06590.

[32]  Ramon van Handel,et al.  Feedback control of quantum state reduction , 2005, IEEE Transactions on Automatic Control.

[33]  Jesper Mork,et al.  Scattering of two photons on a quantum emitter in a one-dimensional waveguide: exact dynamics and induced correlations , 2014, 1409.1256.

[34]  Şükrü Ekin Kocabaş Few-Photon Scattering in Dispersive Waveguides with Multiple Qubits , 2016 .

[35]  Matthew R. James,et al.  Input-output Analysis of Quantum Finite-level Systems in Response to Single Photon States , 2014 .

[36]  Shanhui Fan,et al.  Input-output formalism for few-photon transport in one-dimensional nanophotonic waveguides coupled to a qubit , 2010, 1011.3296.

[37]  Dibyendu Roy,et al.  Few-photon optical diode , 2010, 1003.5698.

[38]  Guofeng Zhang,et al.  Single-Photon Coherent Feedback Control and Filtering , 2019, Encyclopedia of Systems and Control.

[39]  Franco Nori,et al.  Quantum feedback: theory, experiments, and applications , 2014, 1407.8536.

[40]  Hendra Ishwara Nurdin,et al.  Network Synthesis of Linear Dynamical Quantum Stochastic Systems , 2008, SIAM J. Control. Optim..

[41]  Anders S Sørensen,et al.  Continuous-Wave Single-Photon Transistor Based on a Superconducting Circuit. , 2016, Physical review letters.

[42]  Maira Amezcua,et al.  Quantum Optics , 2012 .

[43]  Naoki Yamamoto,et al.  Quantum Risk-Sensitive Estimation and Robustness , 2007, IEEE Transactions on Automatic Control.

[44]  Gerd Leuchs,et al.  Perfect excitation of a matter qubit by a single photon in free space , 2008, 0808.1666.

[45]  Shanhui Fan,et al.  Few-photon transport in a waveguide coupled to a pair of colocated two-level atoms , 2011, 1112.1428.

[46]  Jing Zhang,et al.  Quantum Coherent Nonlinear Feedback With Applications to Quantum Optics on Chip , 2011, IEEE Transactions on Automatic Control.

[47]  Domenico D'Alessandro,et al.  Notions of controllability for bilinear multilevel quantum systems , 2003, IEEE Trans. Autom. Control..

[48]  Jr-Shin Li,et al.  Ensemble Control of Bloch Equations , 2009, IEEE Transactions on Automatic Control.

[49]  M. Lukin,et al.  All-Optical Switch and Transistor Gated by One Stored Photon , 2013, Science.

[50]  Vincent E. Elfving,et al.  Photon scattering from a system of multilevel quantum emitters. I. Formalism , 2018, 1801.03025.

[51]  Joseph Kerckhoff,et al.  The SLH framework for modeling quantum input-output networks , 2016, 1611.00375.

[52]  Claudio Altafini,et al.  Modeling and Control of Quantum Systems: An Introduction , 2012, IEEE Transactions on Automatic Control.

[53]  Barry C. Sanders,et al.  Photon-Mediated Interactions Between Distant Artificial Atoms , 2013, Science.

[54]  Pierre Rouchon,et al.  Models and Feedback Stabilization of Open Quantum Systems , 2014, ArXiv.

[55]  Mazyar Mirrahimi,et al.  Stabilizing Feedback Controls for Quantum Systems , 2005, SIAM J. Control. Optim..

[56]  Ian R. Petersen,et al.  Fault tolerant filtering and fault detection for quantum systems driven by fields in single photon states , 2015, Journal of Mathematical Physics.

[57]  Julio Gea-Banacloche,et al.  One- and two-photon scattering by two atoms in a waveguide , 2017, 1709.00034.

[58]  Shanhui Fan,et al.  Few-Photon Single-Atom Cavity QED With Input-Output Formalism in Fock Space , 2012, IEEE Journal of Selected Topics in Quantum Electronics.

[59]  Shanhui Fan,et al.  Strongly correlated two-photon transport in a one-dimensional waveguide coupled to a two-level system. , 2007, Physical Review Letters.

[60]  J. Ignacio Cirac,et al.  Quantum dynamics of propagating photons with strong interactions: a generalized input–output formalism , 2015, 1501.04427.

[61]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[62]  Matthew R. James,et al.  Zero-dynamics principle for perfect quantum memory in linear networks , 2014, 1403.1698.

[63]  Guofeng Zhang,et al.  LQG/H∞ control of linear quantum stochastic systems , 2015, 2015 34th Chinese Control Conference (CCC).

[64]  Peter Zoller,et al.  Chiral quantum optics with V-level atoms and coherent quantum feedback , 2016, 1606.07466.

[65]  A. Brańczyk,et al.  N-photon wave packets interacting with an arbitrary quantum system , 2012, 1202.3430.

[66]  A. Grimsmo,et al.  Time-Delayed Quantum Feedback Control. , 2015, Physical review letters.

[67]  Daoyi Dong,et al.  Exact analysis of the response of quantum systems to two-photons using a QSDE approach , 2015, 1509.06934.

[68]  R. Sillitto The Quantum Theory of Light , 1974 .

[69]  Andrew M. Childs,et al.  Universal Computation by Multiparticle Quantum Walk , 2012, Science.

[70]  Şükrü Ekin Kocabaş,et al.  Few-photon scattering in dispersive waveguides with multiple qubits. , 2016, Optics letters.

[71]  Ian R. Petersen,et al.  Quantum control theory and applications: A survey , 2009, IET Control Theory & Applications.

[72]  Gniewomir Sarbicki,et al.  Quantum trajectories for a system interacting with environment in a single-photon state: Counting and diffusive processes , 2017, 1706.07967.

[73]  Howard E. Brandt,et al.  Quantum computation and information : AMS Special Session Quantum Computation and Information, January 19-21, 2000, Washington, D.C. , 2002 .

[74]  Peter Zoller,et al.  Chiral quantum optics , 2016, Nature.

[75]  K. Jacobs,et al.  FEEDBACK CONTROL OF QUANTUM SYSTEMS USING CONTINUOUS STATE ESTIMATION , 1999 .

[76]  Claus Kiefer,et al.  Quantum Measurement and Control , 2010 .

[77]  Shanhui Fan,et al.  Analytic properties of two-photon scattering matrix in integrated quantum systems determined by the cluster decomposition principle. , 2013, Physical review letters.