Open source software for the analysis of microarray data.

DNA microarray assays represent the first widely used application that attempts to build upon the information provided by genome projects in the study of biological questions. One of the greatest challenges with working with microarrays is collecting, managing, and analyzing data. Although several commercial and noncommercial solutions exist, there is a growing body of freely available, open source software that allows users to analyze data using a host of existing techniques and to develop their own and integrate them within the system. Here we review three of the most widely used and comprehensive systems, the statistical analysis tools written in R through the Bioconductor project (http://www.bioconductor.org), the Java-based TM4 software system available from The Institute for Genomic Research (http://www.tigr.org/software), and BASE, the Web-based system developed at Lund University (http://base.thep.lu.se).

[1]  J. Chambers Programming with Data: A Guide to the S Language , 1998 .

[2]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[3]  Sandrine Dudoit,et al.  Bioconductor R Packages for Exploratory Analysis and Normalization of cDNA Microarray Data , 2003 .

[4]  Jason E. Stewart,et al.  Minimum information about a microarray experiment (MIAME)—toward standards for microarray data , 2001, Nature Genetics.

[5]  N. Socci,et al.  Leptin-specific patterns of gene expression in white adipose tissue. , 2000, Genes & development.

[6]  A I Saeed,et al.  TM4: a free, open-source system for microarray data management and analysis. , 2003, BioTechniques.

[7]  Robert Gentleman,et al.  An extensible application for assembling annotation for genomic data , 2003, Bioinform..

[8]  E. Lander,et al.  Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Yudong D. He,et al.  Gene expression profiling predicts clinical outcome of breast cancer , 2002, Nature.

[10]  William Stafford Noble,et al.  Analysis of strain and regional variation in gene expression in mouse brain , 2001, Genome Biology.

[11]  Christian A. Rees,et al.  Molecular portraits of human breast tumours , 2000, Nature.

[12]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[13]  Joshua M. Stuart,et al.  MICROARRAY EXPERIMENTS : APPLICATION TO SPORULATION TIME SERIES , 1999 .

[14]  P. Brown,et al.  A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. , 1996, Genome research.

[15]  Teuvo Kohonen,et al.  Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.

[16]  S. Dudoit,et al.  Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. , 2002, Nucleic acids research.

[17]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[18]  Vincent J. Carey,et al.  Visualization and Annotation of Genomic Experiments , 2003 .

[19]  Jerry Li,et al.  Within the fold: assessing differential expression measures and reproducibility in microarray assays , 2002, Genome Biology.

[20]  Ka Yee Yeung,et al.  Validating clustering for gene expression data , 2001, Bioinform..

[21]  Gary A. Churchill,et al.  Analysis of Variance for Gene Expression Microarray Data , 2000, J. Comput. Biol..

[22]  Atul J. Butte,et al.  Unsupervised knowledge discovery in medical databases using relevance networks , 1999, AMIA.

[23]  Ash A. Alizadeh,et al.  'Gene shaving' as a method for identifying distinct sets of genes with similar expression patterns , 2000, Genome Biology.

[24]  W. Cleveland,et al.  Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting , 1988 .

[25]  Laurie J. Heyer,et al.  Exploring expression data: identification and analysis of coexpressed genes. , 1999, Genome research.

[26]  C. Li,et al.  Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[27]  S. Dudoit,et al.  Multiple Hypothesis Testing in Microarray Experiments , 2003 .

[28]  S. Gruvberger,et al.  BioArray Software Environment (BASE): a platform for comprehensive management and analysis of microarray data , 2002, Genome Biology.

[29]  Ron Shamir,et al.  Clustering Gene Expression Patterns , 1999, J. Comput. Biol..

[30]  J. Welsh,et al.  Molecular classification of human carcinomas by use of gene expression signatures. , 2001, Cancer research.

[31]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Rafael A. Irizarry,et al.  An R Package for Analyses of Affymetrix Oligonucleotide Arrays , 2003 .

[33]  Jason E. Stewart,et al.  Design and implementation of microarray gene expression markup language (MAGE-ML) , 2002, Genome Biology.

[34]  Alfonso Valencia,et al.  A hierarchical unsupervised growing neural network for clustering gene expression patterns , 2001, Bioinform..

[35]  Inge Jonassen,et al.  J-Express: exploring gene expression data using Java , 2001, Bioinform..

[36]  Rafael A Irizarry,et al.  Exploration, normalization, and summaries of high density oligonucleotide array probe level data. , 2003, Biostatistics.

[37]  D. Botstein,et al.  The transcriptional program in the response of human fibroblasts to serum. , 1999, Science.

[38]  D Haussler,et al.  Knowledge-based analysis of microarray gene expression data by using support vector machines. , 2000, Proceedings of the National Academy of Sciences of the United States of America.