Three-dimensional polarization control in microscopy.

We propose an approach to optical microscopy that enables full control over the three-dimensional polarization vector at the focal spot of a high-numerical-aperture lens. The input field to the lens is linearly polarized and no polarization optics are needed. This technique utilizes the azimuthal spatial degree of freedom of the input field. We find that only a small set of low-order azimuthal spatial harmonics contributes to the focused field on axis, and a simple transformation exists between the linear vector space of these harmonics and the three-dimensional polarization-vector space. Controlling the relative complex weights of these azimuthal harmonics produces any desired three-dimensional state of polarization.

[1]  Robert M. Dickson,et al.  Imaging Three-Dimensional Single Molecule Orientations , 1999 .

[2]  F. J. García de abajo,et al.  Femtosecond shaping of transverse and longitudinal light polarization. , 2004, Optics letters.

[3]  G. Gerber,et al.  Quantum control of gas-phase and liquid-phase femtochemistry. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[4]  Moungi G. Bawendi,et al.  Room temperature measurements of the 3D orientation of single CdSe quantum dots using polarization microscopy , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[5]  E. Wolf,et al.  Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[6]  A. Boccara,et al.  Polarization effects in apertureless scanning near-field optical microscopy: an experimental study. , 1999, Optics letters.

[7]  E. Wolf,et al.  Electromagnetic diffraction in optical systems - I. An integral representation of the image field , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[8]  R. Dorn,et al.  The focus of light – theoretical calculation and experimental tomographic reconstruction , 2001 .

[9]  Novotny,et al.  Orientational imaging of single molecules by annular illumination , 2000, Physical review letters.

[10]  Lukas Novotny,et al.  Single-molecule orientations determined by direct emission pattern imaging , 2004 .

[11]  Michelle D. Wang,et al.  Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. , 2004, Physical review letters.

[12]  A. Bouhelier,et al.  Near-field scattering of longitudinal fields , 2003 .

[13]  Lukas Novotny,et al.  Theory of Nanometric Optical Tweezers , 1997 .

[14]  K. Hoki,et al.  Quantum control of molecular handedness in a randomly oriented racemic mixture using three polarization components of electric fields , 2002 .

[15]  Louis E. Brus,et al.  Imaging and Time-Resolved Spectroscopy of Single Molecules at an Interface , 1996, Science.

[16]  Michelle D. Wang,et al.  Single molecule analysis of RNA polymerase elongation reveals uniform kinetic behavior , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[17]  S. Hell,et al.  Erratum: Z-polarized confocal microscopy (Journal of Biomedical Optics (July 2001) 6:3 (273-276)) , 2001 .

[18]  Tasso R. M. Sales,et al.  Smallest Focal Spot , 1998 .

[19]  S. Kawata,et al.  Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging. , 2004, Physical review letters.

[20]  Kimani C Toussaint,et al.  Generation of optical vector beams with a diffractive optical element interferometer. , 2005, Optics letters.

[21]  G Gerber,et al.  Femtosecond polarization pulse shaping. , 2001, Optics letters.

[22]  D. Chemla,et al.  Single Molecule Dynamics Studied by Polarization Modulation. , 1996, Physical review letters.

[23]  Thomas A. Klar,et al.  Creating λ /3 focal holes with a Mach–Zehnder interferometer , 2003 .

[24]  Satoshi Kawata,et al.  Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy , 2004 .