Toward High Precision XCO2 Retrievals From TanSat Observations: Retrieval Improvement and Validation Against TCCON Measurements

Abstract TanSat is the 1st Chinese carbon dioxide (CO2) measurement satellite, launched in 2016. In this study, the University of Leicester Full Physics (UoL‐FP) algorithm is implemented for TanSat nadir mode XCO2 retrievals. We develop a spectrum correction method to reduce the retrieval errors by the online fitting of an 8th order Fourier series. The spectrum‐correction model and its a priori parameters are developed by analyzing the solar calibration measurement. This correction provides a significant improvement to the O2 A band retrieval. Accordingly, we extend the previous TanSat single CO2 weak band retrieval to a combined O2 A and CO2 weak band retrieval. A Genetic Algorithm (GA) has been applied to determine the threshold values of post‐screening filters. In total, 18.3% of the retrieved data is identified as high quality compared to the original measurements. The same quality control parameters have been used in a footprint independent multiple linear regression bias correction due to the strong correlation with the XCO2 retrieval error. Twenty sites of the Total Column Carbon Observing Network (TCCON) have been selected to validate our new approach for the TanSat XCO2 retrieval. We show that our new approach produces a significant improvement on the XCO2 retrieval accuracy and precision when compared to TCCON with an average bias and RMSE of −0.08 ppm and 1.47 ppm, respectively. The methods used in this study can help to improve the XCO2 retrieval from TanSat and subsequently the Level‐2 data production, and hence will be applied in the TanSat operational XCO2 processing.

[1]  Tatsuya Yokota,et al.  Global Concentrations of CO2 and CH4 Retrieved from GOSAT: First Preliminary Results , 2009 .

[2]  Robert J. D. Spurr,et al.  On the generation of atmospheric property Jacobians from the (V)LIDORT linearized radiative transfer models , 2014 .

[3]  David Crisp,et al.  Orbiting Carbon Observatory-2 (OCO-2) cloud screening algorithms: validation against collocated MODIS and CALIOP data , 2015 .

[4]  Tatsuya Yokota,et al.  Improvement of the retrieval algorithm for GOSAT SWIR XCO2 and XCH4 and their validation using TCCON data , 2013 .

[5]  Yi Liu,et al.  Optimization of the instrument configuration for TanSat CO 2 spectrometer , 2013 .

[6]  Daren Lu,et al.  First Global Carbon Dioxide Maps Produced from TanSat Measurements , 2018, Advances in Atmospheric Sciences.

[7]  蔺超,et al.  碳卫星CO 2 探测仪发射前的漫反射板定标 , 2018 .

[8]  Steve Fox,et al.  Orbiting Carbon Observatory-2 , 2015 .

[9]  V. Brovkin,et al.  China and India lead in greening of the world through land-use management , 2019, Nature Sustainability.

[10]  Isamu Morino,et al.  Revised (R1) 2014 GGG TCCON measurements from Rikubetsu , 2016 .

[11]  Hartmut Boesch,et al.  HDO/H 2 O ratio retrievals from GOSAT , 2012 .

[12]  Huifang Zhang,et al.  Monitoring carbon dioxide from space: Retrieval algorithm and flux inversion based on GOSAT data and using CarbonTracker-China , 2017, Advances in Atmospheric Sciences.

[13]  Akihiko Kuze,et al.  Consistent satellite XCO 2 retrievals from SCIAMACHY and GOSAT using the BESD algorithm , 2015 .

[14]  Andrew A. Lacis,et al.  Scattering, Absorption, and Emission of Light by Small Particles , 2002 .

[15]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[16]  Hiroshi Watanabe,et al.  Effects of atmospheric light scattering on spectroscopic observations of greenhouse gases from space. Part 2: Algorithm intercomparison in the GOSAT data processing for CO2 retrievals over TCCON sites , 2013 .

[17]  Geoffrey C. Toon,et al.  Total Column Carbon Observing Network (TCCON) Site: Jet Propulsion Laboratory , 2014 .

[18]  Bryan A. Baum,et al.  Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 µm , 2014 .

[19]  郑玉权 Zheng Yu-quan,et al.  Preflight spectral calibration of hyperspectral carbon dioxide spectrometer of TanSat , 2017 .

[20]  Liang Feng,et al.  Angular dependence of aerosol information content in CAPI/TanSat observation over land: Effect of polarization and synergy with A-train satellites , 2017 .

[21]  Yukio Yoshida,et al.  TCCON Philippines: First Measurement Results, Satellite Data and Model Comparisons in Southeast Asia , 2017, Remote. Sens..

[22]  Hartmut Boesch,et al.  Global satellite observations of column-averaged carbon dioxide and methane: The GHG-CCI XCO2 and XCH4 CRDP3 data set , 2017 .

[23]  Brian J. Connor,et al.  Total Column Carbon Observing Network (TCCON) Site: Darwin , 2014 .

[24]  Dongxu Yang,et al.  Aerosol Retrieval Sensitivity and Error Analysis for the Cloud and Aerosol Polarimetric Imager on Board TanSat: The Effect of Multi-Angle Measurement , 2017, Remote. Sens..

[25]  Geoffrey C. Toon,et al.  Total Column Carbon Observing Network (TCCON), Site: Pasadena, California , 2015 .

[26]  M. Buchwitz,et al.  Space-based near-infrared CO 2 measurements : Testing the Orbiting Carbon Observatory retrieval algorithm and validation concept using SCIAMACHY observations over Park Falls , , 2006 .

[27]  B. Connor,et al.  Intercomparison of remote sounding instruments , 1999 .

[28]  David Crisp,et al.  Analysis of Four Years of Global XCO2 Anomalies as Seen by Orbiting Carbon Observatory-2 , 2019, Remote. Sens..

[29]  David Crisp,et al.  Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm , 2018, Atmospheric Measurement Techniques.

[30]  L. Mandrake,et al.  The ACOS CO2 retrieval algorithm-Part II: Global XCO2 data characterization , 2020 .

[31]  Peng Zhang,et al.  CO 2 column-retrieval errors arising from neglecting polarization in forward modeling of 1.6 μm band measurements , 2018 .

[32]  Christopher W. O'Dell,et al.  Acceleration of multiple‐scattering, hyperspectral radiative transfer calculations via low‐streams interpolation , 2008 .

[33]  Z. Cai,et al.  The TanSat mission: preliminary global observations. , 2018, Science bulletin.

[34]  Hartmut Boesch,et al.  Retrieving XCO2 from GOSAT FTS over East Asia Using Simultaneous Aerosol Information from CAI , 2016, Remote. Sens..

[35]  Justus Notholt,et al.  The Total Carbon Column Observing Network , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[36]  Christopher W. O'Dell,et al.  Semi-autonomous sounding selection for OCO-2 , 2013 .

[37]  Andrew K. Heidinger,et al.  Molecular Line Absorption in a Scattering Atmosphere. Part II: Application to Remote Sensing in the O2 A band , 2000 .

[38]  Kang Sun,et al.  Characterization of the OCO-2 instrument line shape functions using on-orbit solar measurements , 2016 .

[39]  Masakatsu Nakajima,et al.  Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. , 2009, Applied optics.

[40]  Tatsuya Yokota,et al.  Impact of aerosol and thin cirrus on retrieving and validating XCO2 from GOSAT shortwave infrared measurements , 2013 .

[41]  Kang Sun,et al.  Characterization of the OCO-2 instrument line shape functions using on-orbit solar measurements , 2016 .

[42]  David Crisp,et al.  The Orbiting Carbon Observatory (OCO-2): spectrometer performance evaluation using pre-launch direct sun measurements , 2014 .

[43]  John Robinson,et al.  Total Column Carbon Observing Network (TCCON) Site: Lauder 125HR , 2014 .

[44]  Hartmut Boesch,et al.  Does GOSAT capture the true seasonal cycle of carbon dioxide , 2015 .

[45]  Hartmut Boesch,et al.  Assessing 5 years of GOSAT Proxy XCH 4 data and associated uncertainties , 2015 .

[46]  Randy Pollock,et al.  Preflight Radiometric Calibration of Orbiting Carbon Observatory 2 , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[47]  Hartmut Boesch,et al.  Methane observations from the Greenhouse Gases Observing SATellite: Comparison to ground‐based TCCON data and model calculations , 2011 .

[48]  Robert J. D. Spurr,et al.  A fast linearized pseudo-spherical two orders of scattering model to account for polarization in vertically inhomogeneous scattering–absorbing media , 2007 .

[49]  G. Toon,et al.  Spaceborne measurements of atmospheric CO2 by high‐resolution NIR spectrometry of reflected sunlight: An introductory study , 2002 .

[50]  David Crisp,et al.  The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products , 2016 .

[51]  Alain Hauchecorne,et al.  The use of the 1.27 µm O2 absorption band for greenhouse gas monitoring from space and application to MicroCarb , 2020, Atmospheric Measurement Techniques.

[52]  M. Buchwitz,et al.  SCIAMACHY: Mission Objectives and Measurement Modes , 1999 .

[53]  Dominik Brunner,et al.  Detectability of CO2 emission plumes of cities and power plants with the Copernicus Anthropogenic CO2 Monitoring (CO2M) mission , 2019 .

[54]  Jing Wang,et al.  An advanced carbon dioxide retrieval algorithm for satellite measurements and its application to GOSAT observations , 2015 .

[55]  Marco Cervino,et al.  Aerosol extinction coefficient profile retrieval in the oxygen A-band considering multiple scattering atmosphere. Test case : SCIAMACHY nadir simulated measurements , 2006 .

[56]  Thomas P. Kurosu,et al.  A linearized discrete ordinate radiative transfer model for atmospheric remote-sensing retrieval , 2001 .

[57]  Peter Bergamaschi,et al.  Atmospheric Chemistry and Physics Atmospheric Methane and Carbon Dioxide from Sciamachy Satellite Data: Initial Comparison with Chemistry and Transport Models , 2022 .

[58]  Ilse Aben,et al.  Retrievals of atmospheric CO2 from simulated space-borne measurements of backscattered near-infrared sunlight: accounting for aerosol effects. , 2009, Applied optics.

[59]  Keeyoon Sung,et al.  Line parameters including temperature dependences of air- and self-broadened line shapes of 12 C 16 O 2 : 2.06-μm region , 2016 .

[60]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[61]  Rebecca Castano,et al.  The ACOS CO 2 retrieval algorithm – Part 1: Description and validation against synthetic observations , 2011 .

[62]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[63]  Y. Ran,et al.  TanSat: a new star in global carbon monitoring from China , 2019, Science Bulletin.

[64]  John Robinson,et al.  Retrieval of atmospheric CO2 with enhanced accuracy and precision from SCIAMACHY: validation with FTS measurements and comparison with model results , 2011 .

[65]  David Crisp,et al.  Comparison of Cloud-Screening Methods Applied to GOSAT Near-Infrared Spectra , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[66]  Stephen J. Wright,et al.  Numerical Optimization (Springer Series in Operations Research and Financial Engineering) , 2000 .

[67]  B. Connor,et al.  Quantification of uncertainties in OCO-2 measurements of XCO 2 : simulations and linear error analysis , 2016 .

[68]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[69]  George Gabriel Stokes,et al.  On the Composition and Resolution of Streams of Polarized Light from different Sources , 2009 .

[70]  Hartmut Bösch,et al.  Tropospheric aerosol profile information from high-resolution oxygen A-band measurements from space , 2015 .

[71]  M. Buchwitz,et al.  Space‐based near‐infrared CO2 measurements: Testing the Orbiting Carbon Observatory retrieval algorithm and validation concept using SCIAMACHY observations over Park Falls, Wisconsin , 2006 .

[72]  Hartmut Boesch,et al.  The Greenhouse Gas Climate Change Initiative (GHG-CCI): Comparison and quality assessment of near-surface-sensitive satellite-derived CO2 and CH4 global data sets , 2013 .

[73]  David Crisp,et al.  Comparisons of the Orbiting Carbon Observatory-2 (OCO-2) X CO 2 measurements with TCCON , 2016 .

[74]  Peter Somkuti,et al.  A new space-borne perspective of crop productivity variations over the US Corn Belt , 2020, Agricultural and Forest Meteorology.

[75]  Michito Sakai,et al.  Results of the commissioning phase of the mission instruments on GOSAT-2 , 2019, Remote Sensing.

[76]  Hartmut Boesch,et al.  Application of a PCA-Based Fast Radiative Transfer Model to XCO2 Retrievals in the Shortwave Infrared , 2017 .

[77]  James McDuffie,et al.  Quantification of uncertainties in OCO-2 measurements of XCO 2 :simulations and linear error analysis , 2016 .

[78]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[79]  Keeyoon Sung,et al.  Line parameters including temperature dependences of self- and air-broadened line shapes of 12 C 16 O 2 : 1.6-μm region , 2016 .

[80]  Rebecca Castano,et al.  The ACOS CO 2 retrieval algorithm – Part II: Global X CO 2 data characterization , 2012 .

[81]  A. Butz,et al.  Thermal and near-infrared sensor for carbon observation Fourier transform spectrometer-2 (TANSO-FTS-2) on the Greenhouse gases Observing SATellite-2 (GOSAT-2) during its first year in orbit , 2020, Atmospheric Measurement Techniques.

[82]  Charles E. Miller,et al.  NASA Orbiting Carbon Observatory: measuring the column averaged carbon dioxide mole fraction from space , 2008 .

[83]  Tae-Young Goo,et al.  Carbon dioxide retrieval from OCO-2 satellite observations using the RemoTeC algorithm and validation with TCCON measurements , 2018, Atmospheric Measurement Techniques.

[84]  Haili Hu,et al.  Full-physics carbon dioxide retrievals from the Orbiting Carbon Observatory-2 (OCO-2) satellite by only using the 2.06 µm band , 2019 .

[85]  D. Griffith,et al.  Solar Fourier transform infrared spectra (Wollongong) , 2014 .

[86]  Annmarie Eldering,et al.  How bias correction goes wrong: measurement of XCO2 affected by erroneous surface pressure estimates , 2019, Atmospheric Measurement Techniques.

[87]  Peter Somkuti,et al.  Novel methods for atmospheric carbon dioxide retrieval from the JAXA GOSAT and NASA OCO-2 satellites , 2018 .

[88]  Makoto Saito,et al.  Regional CO2 flux estimates for 2009–2010 based on GOSAT and ground-based CO2 observations , 2012 .

[89]  C. Bohren,et al.  An introduction to atmospheric radiation , 1981 .

[90]  Ying Sun,et al.  The Orbiting Carbon Observatory-2 early science investigations of regional carbon dioxide fluxes , 2017, Science.

[91]  Hartmut Boesch,et al.  The greenhouse gas climate change initiative (GHG-CCI): Comparative validation of GHG-CCI SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT CO2 and CH4 retrieval algorithm products with measurements from the TCCON , 2013 .

[92]  Nikolaos V. Sahinidis,et al.  Derivative-free optimization: a review of algorithms and comparison of software implementations , 2013, J. Glob. Optim..

[93]  Akihiko Kuze,et al.  Toward accurate CO2 and CH4 observations from GOSAT , 2011 .

[94]  Rebecca Castano,et al.  A method for evaluating bias in global measurements of CO 2 total columns from space , 2011 .

[95]  David Crisp,et al.  Long-Term Vicarious Calibration of GOSAT Short-Wave Sensors: Techniques for Error Reduction and New Estimates of Radiometric Degradation Factors , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[96]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[97]  Charles E. Miller,et al.  Orbiting Carbon Observatory , 2005 .

[98]  Rebecca Castano,et al.  The Orbiting Carbon Observatory-2: first 18 months of science data products , 2016 .

[99]  Christof Janssen,et al.  Total Column Carbon Observing Network (TCCON) Site: Paris , 2014 .

[100]  Atul K. Jain,et al.  Global Carbon Budget 2018 , 2014, Earth System Science Data.

[101]  Kohei Arai,et al.  Total Column Carbon Observing Network (TCCON) Site: Saga , 2014 .

[102]  Keeyoon Sung,et al.  Multispectrum analysis of the oxygen A-band. , 2016, Journal of Quantitative Spectroscopy and Radiative Transfer.

[103]  Abdanour Irbah,et al.  SOLAR-ISS: A new reference spectrum based on SOLAR/SOLSPEC observations , 2018 .

[104]  Hartmut Boesch,et al.  Atmospheric carbon dioxide retrieved from the Greenhouse gases Observing SATellite (GOSAT): Comparison with ground‐based TCCON observations and GEOS‐Chem model calculations , 2012 .

[105]  R. Pavlick,et al.  The OCO-3 mission; measurement objectives and expected performance based on one year of simulated data , 2018 .

[106]  Tatsuya Yokota,et al.  Influence of aerosols and thin cirrus clouds on the GOSAT-observed CO 2 : a case study over Tsukuba , 2011 .

[107]  Pauli Heikkinen,et al.  Total Column Carbon Observing Network (TCCON) Site: Sodankyla , 2014 .

[108]  Shuai Li,et al.  Geometric correction for TanSat atmospheric carbon dioxide grating spectrometer , 2019, Sensors and Actuators A: Physical.

[109]  Hartmut Boesch,et al.  Evaluation of errors from neglecting polarization in the forward modeling of O2 A band measurements from space, with relevance to CO2 column retrieval from polarization-sensitive instruments , 2007 .

[110]  Liang Feng,et al.  Consistent regional fluxes of CH4 and CO2 inferred from GOSAT proxy XCH4:XCO2 retrievals, 2010-2014 , 2016 .

[111]  J. Tamminen,et al.  Direct space‐based observations of anthropogenic CO2 emission areas from OCO‐2 , 2016 .