A non-parametric automatic blending methodology to estimate rainfall fields from rain gauge and radar data

Quantitative estimation of rainfall fields has been a crucial objective from early studies of the hydrological applications of weather radar. Previous studies have suggested that flow estimations are improved when radar and rain gauge data are combined to estimate input rainfall fields. This paper reports new research carried out in this field. Classical approaches for the selection and fitting of a theoretical correlogram (or semivariogram) model (needed to apply geostatistical estimators) are avoided in this study. Instead, a non-parametric technique based on FFT is used to obtain two-dimensional positive-definite correlograms directly from radar observations, dealing with both the natural anisotropy and the temporal variation of the spatial structure of the rainfall in the estimated fields. Because these correlation maps can be automatically obtained at each time step of a given rainfall event, this technique might easily be used in operational (real-time) applications. This paper describes the development of the non-parametric estimator exploiting the advantages of FFT for the automatic computation of correlograms and provides examples of its application on a case study using six rainfall events. This methodology is applied to three different alternatives to incorporate the radar information (as a secondary variable), and a comparison of performances is provided. In particular, their ability to reproduce in estimated rainfall fields (i) the rain gauge observations (in a cross-validation analysis) and (ii) the spatial patterns of radar fields are analyzed. Results seem to indicate that the methodology of kriging with external drift [KED], in combination with the technique of automatically computing 2-D spatial correlograms, provides merged rainfall fields with good agreement with rain gauges and with the most accurate approach to the spatial tendencies observed in the radar rainfall fields, when compared with other alternatives analyzed.

[1]  D. Rosenfeld,et al.  The Window Probability Matching Method for Rainfall Measurements with Radar , 1994 .

[2]  Xudong Sun,et al.  Flood estimation using radar and raingauge data , 2000 .

[3]  Ezio Todini,et al.  A Bayesian technique for conditioning radar precipitation estimates to rain-gauge measurements , 2001 .

[4]  R. Olea Geostatistics for Natural Resources Evaluation By Pierre Goovaerts, Oxford University Press, Applied Geostatistics Series, 1997, 483 p., hardcover, $65 (U.S.), ISBN 0-19-511538-4 , 1999 .

[5]  J. Nash,et al.  River flow forecasting through conceptual models part I — A discussion of principles☆ , 1970 .

[6]  I. Zawadzki,et al.  Reflectivity-Rain Rate Relationships for Radar Hydrology in Brazil , 1987 .

[7]  Graham J. G. Upton,et al.  On-line detection of errors in tipping-bucket raingauges , 2003 .

[8]  D. Schertzer,et al.  New Uncertainty Concepts in Hydrology and Water Resources: Multifractals and rain , 1995 .

[9]  E. Amitai Systematic Variation of Observed Radar Reflectivity–Rainfall Rate Relations in the Tropics , 2000 .

[10]  Daniel Sempere-Torres,et al.  Use of Weather Radar for Combined Sewer Overflows Monitoring and Control , 1999 .

[11]  Clayton V. Deutsch,et al.  GSLIB: Geostatistical Software Library and User's Guide , 1993 .

[12]  B. Mandelbrot,et al.  Fractal properties of rain, and a fractal model , 1985 .

[13]  J. Joseph,et al.  Fourier transforms , 2012 .

[14]  D. Rosenfeld,et al.  Improved accuracy of radar WPMM estimated rainfall upon application of objective classification criteria , 1995 .

[15]  Dong-Jun Seo,et al.  Real-time estimation of rainfall fields using radar rainfall and rain gage data , 1998 .

[16]  H. Wackernagle,et al.  Multivariate geostatistics: an introduction with applications , 1998 .

[17]  Reconstruction of Rainfall Fields By Combining Ground Raingauges Data with Radar Maps Using External Drift Method , 1997 .

[18]  E. Ziegel,et al.  Geostatistics Wollongong '96 , 1997 .

[19]  J. Marshall,et al.  THE DISTRIBUTION OF RAINDROPS WITH SIZE , 1948 .

[20]  J. Bech Implementation of the EHIMI Software Package in the Weather Radar Operational Chain of the Catalan Meteorological Service , 2005 .

[21]  Andre G. Journel,et al.  Two Markov Models and Their Application , 1999 .

[22]  W. F. Krajewski,et al.  Spatial rainfall estimation by linear and non-linear co-kriging of radar-rainfall and raingage data , 1989 .

[23]  A. Flint,et al.  Precipitation Estimation in Mountainous Terrain Using Multivariate Geostatistics. Part II: Isohyetal Maps , 1990 .

[24]  Witold F. Krajewski,et al.  Stochastic interpolation of rainfall data from rain gages and radar using cokriging: 1. Design of experiments , 1990 .

[25]  W. Paul Menzel,et al.  Cloud Properties inferred from 812-µm Data , 1994 .

[26]  J. Jaime Gómez-Hernández,et al.  Automatic Modeling of Cross-Covariances for Rainfal Estimation Using Raingage and Radar Data , 2004 .

[27]  Guy Delrieu,et al.  Rain Measurement by Raingage-Radar Combination: A Geostatistical Approach , 1988 .

[28]  Xianlin Ma,et al.  A program for 2D modeling (cross) correlogram tables using fast Fourier transform , 2001 .

[29]  Andre G. Journel,et al.  Automatic Modeling of (Cross) Covariance Tables Using Fast Fourier Transform , 1998 .

[30]  Andre G. Journel,et al.  Joint simulation of multiple variables with a Markov-type coregionalization model , 1994 .

[31]  A. Flint,et al.  Precipitation Estimation in Mountainous Terrain Using Multivariate Geostatistics. Part I: Structural Analysis , 1992 .

[32]  James W. Wilson,et al.  Radar Measurement of Rainfall—A Summary , 1979 .

[33]  G. Pegram,et al.  Combining radar and rain gauge rainfall estimates using conditional merging , 2005 .

[34]  Shaun Lovejoy,et al.  Multifractals, cloud radiances and rain , 2006 .

[35]  Andre G. Journel,et al.  Markov Models for Cross-Covariances , 1999 .

[36]  Alexis Berne,et al.  Temporal and spatial resolution of rainfall measurements required for urban hydrology , 2004 .

[37]  Tomislav Hengl,et al.  Comparison of kriging with external drift and regression-kriging. Technical report , 2003 .

[38]  Witold F. Krajewski,et al.  A method for filtering out raingauge representativeness errors from the verification distributions of radar and raingauge rainfall , 2004 .

[39]  David B. Wolff,et al.  General Probability-matched Relations between Radar Reflectivity and Rain Rate , 1993 .

[40]  Eulogio Pardo-Igúzquiza,et al.  Optimal areal rainfall estimation using raingauges and satellite data , 1999 .

[41]  Ashish Sharma,et al.  Correcting of real-time radar rainfall bias using a Kalman filtering approach , 2006 .

[42]  Tingting Yao Automatic covariance modeling and conditional spectral simulation with Fast Fourier Transform , 1998 .

[43]  Witold F. Krajewski,et al.  Cokriging radar‐rainfall and rain gage data , 1987 .

[44]  I. Zawadzki Statistical Properties of Precipitation Patterns , 1973 .

[45]  I. Zawadzki,et al.  On Radar-Raingage Comparison , 1975 .

[46]  G. Pegram,et al.  High resolution space–time modelling of rainfall: the “String of Beads” model , 2001 .

[47]  Urs Germann,et al.  Variograms of Radar Reflectivity to Describe the Spatial Continuity of Alpine Precipitation , 2001 .

[48]  Dong-Jun Seo,et al.  Real-time estimation of rainfall fields using rain gage data under fractional coverage conditions , 1998 .