Preference-Based Multi-Objective Particle Swarm Optimization Using Desirabilities

The integration of experts' preferences is an important aspect in multi-objective optimization. Usually, one out of a set of Pareto optimal solutions has to be chosen based on expert knowledge. A combination of multi-objective particle swarm optimization (MOPSO) with the desirability concept is introduced to efficiently focus on desired and relevant regions of the true Pareto front of the optimization problem which facilitates the solution selection process. Desirability functions of the objectives are optimized, and the desirability index is used for selecting the global best particle in each iteration. The resulting MOPSO variant DF-MOPSO in most cases exclusively generates solutions in the desired area of the Pareto front. Approximations of the whole Pareto front result in cases of misspecified desired regions.

[1]  Carlos A. Coello Coello,et al.  Multi-Objective Particle Swarm Optimizers: An Experimental Comparison , 2009, EMO.

[2]  Salvatore Greco,et al.  Evolutionary Multi-Criterion Optimization , 2011, Lecture Notes in Computer Science.

[3]  J. Teich,et al.  The role of /spl epsi/-dominance in multi objective particle swarm optimization methods , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[4]  Jürgen Branke,et al.  Interactive Multiobjective Evolutionary Algorithms , 2008, Multiobjective Optimization.

[5]  Xiaodong Li,et al.  Integrating user preferences with particle swarms for multi-objective optimization , 2008, GECCO '08.

[6]  Lily Rachmawati,et al.  Preference Incorporation in Multi-objective Evolutionary Algorithms: A Survey , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[7]  Jürgen Teich,et al.  Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO) , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[8]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[9]  Jonathan E. Fieldsend,et al.  A MOPSO Algorithm Based Exclusively on Pareto Dominance Concepts , 2005, EMO.

[10]  Achille Messac,et al.  Physical programming - Effective optimization for computational design , 1996 .

[11]  Edmund K. Burke,et al.  Parallel Problem Solving from Nature - PPSN IX: 9th International Conference, Reykjavik, Iceland, September 9-13, 2006, Proceedings , 2006, PPSN.

[12]  T. Krink,et al.  Extending particle swarm optimisers with self-organized criticality , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[13]  Kalyanmoy Deb,et al.  Multiobjective optimization , 1997 .

[14]  H. Trautmann,et al.  Preference-based Pareto optimization in certain and noisy environments , 2009 .

[15]  Andrew Lewis,et al.  Interactive multi-objective particle swarm optimization with heatmap-visualization-based user interface , 2010 .

[16]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[17]  Sergei Utyuzhnikov,et al.  NUMERICAL METHOD FOR GENERATING THE ENTIRE PARETO FRONTIER IN MULTIOBJECTIVE OPTIMIZATION , 2005 .

[18]  Carlos A. Coello Coello,et al.  EMOPSO: A Multi-Objective Particle Swarm Optimizer with Emphasis on Efficiency , 2007, EMO.

[19]  Jürgen Teich,et al.  Covering Pareto-optimal fronts by subswarms in multi-objective particle swarm optimization , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[20]  Carlos A. Coello Coello,et al.  Improving PSO-Based Multi-objective Optimization Using Crowding, Mutation and epsilon-Dominance , 2005, EMO.

[21]  Jürgen Branke,et al.  About Selecting the Personal Best in Multi-Objective Particle Swarm Optimization , 2006, PPSN.

[22]  Xiao-Feng Xie,et al.  Adaptive particle swarm optimization on individual level , 2002, 6th International Conference on Signal Processing, 2002..

[23]  Jürgen Branke,et al.  Consideration of Partial User Preferences in Evolutionary Multiobjective Optimization , 2008, Multiobjective Optimization.

[24]  Carlos A. Coello Coello,et al.  Handling preferences in evolutionary multiobjective optimization: a survey , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[25]  Heike Trautmann,et al.  On the distribution of the desirability index using Harrington’s desirability function , 2006 .

[26]  M Reyes Sierra,et al.  Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art , 2006 .

[27]  Jing J. Liang,et al.  Problem Definitions for Performance Assessment of Multi-objective Optimization Algorithms , 2007 .