On the Origin of Asymmetric Induction of the Palladium-Catalyzed Allylic Substitution Reaction with Chiral 4,4-Disubstituted 4,5-Dihydro-2-(phosphinoaryl)oxazole Ligands

The X-ray analyses of (η3-allyl){4-benzyl-2-[2-(diphenylphosphino-κP)phenyl]-4,5-dihydro-4-4-methyloxazole-κN}palladium(II) hexafluorophosphate (5) and the analogous [Pd(η3-1,3-diphenylallyl)] complex 6 are presented. A comparison with the (η3-allyl)- and (η-1,3-diphenylallyl)palladium complexes 2 and 3, respectively, containing the 4-monosubstituted 4,5-dihydro-2-(phosphinoaryl)oxazole ligand 1a reveals important structural differences (Fig. 3). 1H-NMR Spectroscopic investigation confirm that the 4,4-disubstituted 4,5-dihydro-2-(phosphinoaryl)oxazole ligand 4 of 5 and 6 shows the same conformation in solution as in the solid state (Table 2). The application of ligand (S)-4 in the Pd-catalyzed allylic substitution demonstrates a configurational relationship between the orientation of the allyl ligand in the intermediate (cf. complex 6) and the absolute configuration of the allylic-substitution product (Table 3).

[1]  M. Neuburger,et al.  Crystallographic studies of {η3-1,3-dimethylallyl}{2-[2′-diphenylphosphino) phenyl]oxazoline-P,N} palladium(II) hexafluorophosphates complexes complemented by 1H NMR investigations , 1997 .

[2]  H. Steinhagen,et al.  Palladium‐Catalyzed Allylic Alkylation with Phosphinoaryldihydrooxazole Ligands: First Evidence and NMR Spectroscopic Structure Determination of a Primary Olefin–Pd0 Complex , 1997 .

[3]  S. Schaffner,et al.  Variants of Solid‐State and Solution Structures of (η3‐Allyl)‐ {2‐[2′‐(diphenylphosphino)phenyl]‐4,5‐dihydrooxazole‐P,N}palladium(II) hexafluorophosphates and tetraphenylborates , 1997 .

[4]  Günter Helmchen,et al.  Enantioselective catalysis with complexes of asymmetric P,N-chelate ligands , 1997 .

[5]  S. Schaffner,et al.  Synthesis, and Solution and Solid‐State Structures of (η3‐Allyl){(4S)‐4‐benzyl‐2‐[2′‐(diphenylphosphino)phenyl]‐ 4,5‐dihydrooxazole‐P,N}palladium(II) Hexafluorophosphates. Comparison with Dichloro{(4S)‐2‐[2′‐(diphenylphosphino)phenyl]‐4,5‐dihydro‐4‐phenyloxazole‐P,N}zinc(II) , 1996 .

[6]  V. Gramlich,et al.  Palladium-Catalyzed Asymmetric Allylic Amination Using Ferrocenyl Pyrazole Ligands: Steric Control of η3-Allyl Configuration and Site-Selective Nucleophilic Attack , 1996 .

[7]  A. Albinati,et al.  1,3-DIPHENYLALLYL COMPLEXES OF PALLADIUM(II) : NMR, X-RAY, AND CATALYTIC STUDIES , 1995 .

[8]  M. Neuburger,et al.  ENANTIOSELECTIVE ALLYLIC SUBSTITUTION CATALYZED BY CHIRAL [BIS(DIHYDROOXAZOLE)]PALLADIUM COMPLEXES - CATALYST STRUCTURE AND POSSIBLE MECHANISM OF ENANTIOSELECTION , 1995 .

[9]  G. Lloyd‐Jones,et al.  CHIRAL PHOSPHANODIHYDROOXAZOLES IN ASYMMETRIC CATALYSIS : TUNGSTEN-CATALYZED ALLYLIC SUBSTITUTION , 1995 .

[10]  G. Lloyd‐Jones,et al.  Synthesis and Structures of Low-Valent Tungsten Complexes Bearing Chiral Oxazoline-Derived Ligands , 1995 .

[11]  Guy C. Lloyd-Jones,et al.  Chirale Phosphanodihydrooxazole in der asymmetrischen Katalyse: Wolfram‐katalysierte allylische Substitution , 1995 .

[12]  Maria Cristina Burla,et al.  SIR92 – a program for automatic solution of crystal structures by direct methods , 1994 .

[13]  P. Guiry,et al.  Mechanistic and synthetic studies in catalytic allylic alkylation with palladium complexes of 1-(2-diphenylphosphino-1-naphthyl)isoquinoline , 1994 .

[14]  O. Walter,et al.  Catalysis of allylic substitutions by Pd complexes of oxazolines containing an additional P, S, or Se Center. X-ray crystal structures and solution structures of chiral π-allyl palladium complexes of phosphinoaryloxazolines , 1994 .

[15]  C. Frost,et al.  Asymmetric palladium catalysed allylic substitution using phosphorus containing oxazoline ligands , 1993 .

[16]  A. Pfaltz,et al.  Chiral Phosphinoaryldihydrooxazoles as Ligands in Asymmetric Catalysis: Pd‐Catalyzed Allylic Substitution , 1993 .

[17]  Andreas Pfaltz,et al.  Chirale Phosphinoaryldihydrooxazole als Liganden in der asymmetrischen Katalyse: Pd‐katalysierte allylische Substitution , 1993 .

[18]  O. Reiser Palladium-Catalyzed, Enantioselective Allylic Substitutions , 1993 .

[19]  O. Reiser Palladium‐katalysierte, enantioselektive allylische Substitutionen , 1993 .

[20]  Jürgen Sprinz,et al.  Phosphinoaryl- and phosphinoalkyloxazolines as new chiral ligands for enantioselective catalysis: Very high enantioselectivity in palladium catalyzed allylic substitutions , 1993 .

[21]  S. Masamune,et al.  An improved, convenient procedure for reduction of amino acids to aminoalcohols: Use of NaBH4-H2SO4 , 1992 .

[22]  J. Carruthers,et al.  A weighting scheme for least-squares structure refinement , 1979 .

[23]  F. S. Mathews,et al.  A semi-empirical method of absorption correction , 1968 .

[24]  C. Frost,et al.  Palladium-catalysed asymmetric allylic substitution: a ligand design incorporating steric and electronic effects , 1994 .

[25]  C. Fahrni,et al.  5-aza-semicorrins: A new class of bidentate nitrogen ligands for enantioselective catalysis , 1992 .