On the Origin of Asymmetric Induction of the Palladium-Catalyzed Allylic Substitution Reaction with Chiral 4,4-Disubstituted 4,5-Dihydro-2-(phosphinoaryl)oxazole Ligands
暂无分享,去创建一个
[1] M. Neuburger,et al. Crystallographic studies of {η3-1,3-dimethylallyl}{2-[2′-diphenylphosphino) phenyl]oxazoline-P,N} palladium(II) hexafluorophosphates complexes complemented by 1H NMR investigations , 1997 .
[2] H. Steinhagen,et al. Palladium‐Catalyzed Allylic Alkylation with Phosphinoaryldihydrooxazole Ligands: First Evidence and NMR Spectroscopic Structure Determination of a Primary Olefin–Pd0 Complex , 1997 .
[3] S. Schaffner,et al. Variants of Solid‐State and Solution Structures of (η3‐Allyl)‐ {2‐[2′‐(diphenylphosphino)phenyl]‐4,5‐dihydrooxazole‐P,N}palladium(II) hexafluorophosphates and tetraphenylborates , 1997 .
[4] Günter Helmchen,et al. Enantioselective catalysis with complexes of asymmetric P,N-chelate ligands , 1997 .
[5] S. Schaffner,et al. Synthesis, and Solution and Solid‐State Structures of (η3‐Allyl){(4S)‐4‐benzyl‐2‐[2′‐(diphenylphosphino)phenyl]‐ 4,5‐dihydrooxazole‐P,N}palladium(II) Hexafluorophosphates. Comparison with Dichloro{(4S)‐2‐[2′‐(diphenylphosphino)phenyl]‐4,5‐dihydro‐4‐phenyloxazole‐P,N}zinc(II) , 1996 .
[6] V. Gramlich,et al. Palladium-Catalyzed Asymmetric Allylic Amination Using Ferrocenyl Pyrazole Ligands: Steric Control of η3-Allyl Configuration and Site-Selective Nucleophilic Attack , 1996 .
[7] A. Albinati,et al. 1,3-DIPHENYLALLYL COMPLEXES OF PALLADIUM(II) : NMR, X-RAY, AND CATALYTIC STUDIES , 1995 .
[8] M. Neuburger,et al. ENANTIOSELECTIVE ALLYLIC SUBSTITUTION CATALYZED BY CHIRAL [BIS(DIHYDROOXAZOLE)]PALLADIUM COMPLEXES - CATALYST STRUCTURE AND POSSIBLE MECHANISM OF ENANTIOSELECTION , 1995 .
[9] G. Lloyd‐Jones,et al. CHIRAL PHOSPHANODIHYDROOXAZOLES IN ASYMMETRIC CATALYSIS : TUNGSTEN-CATALYZED ALLYLIC SUBSTITUTION , 1995 .
[10] G. Lloyd‐Jones,et al. Synthesis and Structures of Low-Valent Tungsten Complexes Bearing Chiral Oxazoline-Derived Ligands , 1995 .
[11] Guy C. Lloyd-Jones,et al. Chirale Phosphanodihydrooxazole in der asymmetrischen Katalyse: Wolfram‐katalysierte allylische Substitution , 1995 .
[12] Maria Cristina Burla,et al. SIR92 – a program for automatic solution of crystal structures by direct methods , 1994 .
[13] P. Guiry,et al. Mechanistic and synthetic studies in catalytic allylic alkylation with palladium complexes of 1-(2-diphenylphosphino-1-naphthyl)isoquinoline , 1994 .
[14] O. Walter,et al. Catalysis of allylic substitutions by Pd complexes of oxazolines containing an additional P, S, or Se Center. X-ray crystal structures and solution structures of chiral π-allyl palladium complexes of phosphinoaryloxazolines , 1994 .
[15] C. Frost,et al. Asymmetric palladium catalysed allylic substitution using phosphorus containing oxazoline ligands , 1993 .
[16] A. Pfaltz,et al. Chiral Phosphinoaryldihydrooxazoles as Ligands in Asymmetric Catalysis: Pd‐Catalyzed Allylic Substitution , 1993 .
[17] Andreas Pfaltz,et al. Chirale Phosphinoaryldihydrooxazole als Liganden in der asymmetrischen Katalyse: Pd‐katalysierte allylische Substitution , 1993 .
[18] O. Reiser. Palladium-Catalyzed, Enantioselective Allylic Substitutions , 1993 .
[19] O. Reiser. Palladium‐katalysierte, enantioselektive allylische Substitutionen , 1993 .
[20] Jürgen Sprinz,et al. Phosphinoaryl- and phosphinoalkyloxazolines as new chiral ligands for enantioselective catalysis: Very high enantioselectivity in palladium catalyzed allylic substitutions , 1993 .
[21] S. Masamune,et al. An improved, convenient procedure for reduction of amino acids to aminoalcohols: Use of NaBH4-H2SO4 , 1992 .
[22] J. Carruthers,et al. A weighting scheme for least-squares structure refinement , 1979 .
[23] F. S. Mathews,et al. A semi-empirical method of absorption correction , 1968 .
[24] C. Frost,et al. Palladium-catalysed asymmetric allylic substitution: a ligand design incorporating steric and electronic effects , 1994 .
[25] C. Fahrni,et al. 5-aza-semicorrins: A new class of bidentate nitrogen ligands for enantioselective catalysis , 1992 .