Crystal Growth and Complex Characterization of Novel Gallium- and Germanium-Rich Tourmalines: Refinement of the Crystal Structure, Cation Distribution, and Raman and Mössbauer Spectroscopy

[1]  V. Shilovskikh,et al.  Ln3+ (Ln3+ = La, Nd, Eu, Yb) incorporation in synthetic tourmaline analogues: Towards tourmaline REE pattern explanation , 2021, Chemical Geology.

[2]  A. V. Spivak,et al.  Raman spectroscopy and high pressure study of synthetic Ga,Ge-rich tourmaline. , 2020, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[3]  V. Shilovskikh,et al.  Synthesis and crystal structure of Pb-dominant tourmaline , 2020 .

[4]  I. Collings,et al.  Compressibility and structure behaviour of maruyamaite (K-tourmaline) from the Kokchetav massif at high pressure up to 20 GPa , 2019, Mineralogy and Petrology.

[5]  T. Duffy,et al.  Compressibility of synthetic Mg-Al tourmalines to 60 GPa , 2019, American Mineralogist.

[6]  Ke Wang,et al.  High Efficiency Electrothermal Graphene/Tourmaline Composite Fabric Joule Heater with Durable Abrasion Resistance via a Spray Coating Route , 2018, Industrial & Engineering Chemistry Research.

[7]  L. Liao,et al.  The origin of pyroelectricity in tourmaline at varying temperature , 2018 .

[8]  F. Bosi Tourmaline crystal chemistry , 2018 .

[9]  G. Giester,et al.  First high-pressure synthesis of rossmanitic tourmaline and evidence for the incorporation of Li at the X site , 2017, Physics and Chemistry of Minerals.

[10]  D. Deyneko,et al.  Synthesis and crystal structure of Ga-rich, Fe-bearing tourmaline , 2016 .

[11]  J. Haines,et al.  Piezoelectric and non-linear optical properties of α-quartz type Si1−xGexO2 single crystals , 2016 .

[12]  B. Mihailova,et al.  Exploring the potential of Raman spectroscopy for crystallochemical analyses of complex hydrous silicates: II. Tourmalines , 2015 .

[13]  Olga V. Frank-Kamenetskaya,et al.  Crystal structure and stability of Ni-rich synthetic tourmaline. Distribution of divalent transition-metal cations over octahedral positions , 2015, Mineralogical Magazine.

[14]  Peng Wang,et al.  Laboratory investigation of dynamic rheological properties of tourmaline modified bitumen , 2015 .

[15]  G. McIntyre,et al.  First accurate location of two proton sites in tourmaline: A single-crystal neutron diffraction study of oxy-dravite , 2014, Mineralogical magazine.

[16]  R. L. Moreira,et al.  Raman and infrared study of hydroxyl sites in natural uvite, fluor-uvite, magnesio-foitite, dravite and elbaite tourmalines , 2014, Physics and Chemistry of Minerals.

[17]  Barbara L. Dutrow,et al.  Tourmaline at diagenetic to low-grade metamorphic conditions: Its petrologic applicability , 2012 .

[18]  Giovanna Agrosì,et al.  Tsilaisite, NaMn3Al6(Si6O18)(BO3)3(OH)3OH, a new mineral species of the tourmaline supergroup from Grotta d’Oggi, San Pietro in Campo, island of Elba, Italy , 2012 .

[19]  Zhiyuan Zhang,et al.  Adsorption of Cd(II), Ni(II), and Zn(II) by Tourmaline at Acidic Conditions: Kinetics, Thermodynamics, and Mechanisms , 2012 .

[20]  J. Schreuer,et al.  Elastic and piezoelectric constants of tourmaline single crystals at non-ambient temperatures determined by resonant ultrasound spectroscopy , 2012 .

[21]  B. Dutrow,et al.  Tourmaline: A Geologic DVD , 2011 .

[22]  L. Tijing,et al.  Mitigation of scaling in heat exchangers by physical water treatment using zinc and tourmaline , 2011 .

[23]  C. P. Wang,et al.  Adsorption of Pb(II) Ion from Aqueous Solutions by Tourmaline as a Novel Adsorbent , 2011 .

[24]  B. Dutrow,et al.  Nomenclature of the tourmaline-supergroup minerals , 2011 .

[25]  Yu. N. Shapovalov,et al.  Growth of tourmaline single crystals containing transition metal elements in hydrothermal solutions , 2011 .

[26]  D. London Experimental synthesis and stability of tourmaline: a historical overview , 2011 .

[27]  V. V. Hinsberg,et al.  Tourmaline: an ideal indicator of its host environment , 2011 .

[28]  A. A. Marakushev,et al.  Experimental study of stability and crystallization peculiarities of tourmaline in hydrothermal conditions , 2009 .

[29]  F. Lameiras,et al.  Backgrounds for the Industrial Use of Black Tourmaline Based on Its Crystal Structure Characteristics , 2008 .

[30]  G. Andreozzi,et al.  Linking Mössbauer and structural parameters in elbaite-schorl-dravite tourmalines , 2008 .

[31]  S. Lucchesi,et al.  Crystal chemical relationships in the tourmaline group: Structural constraints on chemical variability , 2007 .

[32]  Christine M. Clark,et al.  TOURMALINE: STRUCTURAL FORMULA CALCULATIONS , 2007 .

[33]  S. Lucchesi,et al.  Crystal chemistry of the schorl-dravite series , 2004 .

[34]  A. Goetz,et al.  Ab initio quantum mechanical modeling of infrared vibrational frequencies of the OH group in dioctahedral phyllosilicates. Part I: Methods, results and comparison to experimental data , 2002 .

[35]  W. Wagner,et al.  The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use , 2002 .

[36]  F. Hawthorne BOND-VALENCE CONSTRAINTS ON THE CHEMICAL COMPOSITION OF TOURMALINE , 2002 .

[37]  A. C. P. Soares,et al.  Infrared study of OH sites in tourmaline from the elbaite-schorl series , 2000 .

[38]  H. Westrich,et al.  Mg self-diffusion in pyrope garnet , 1995 .

[39]  M. Lewis,et al.  Assessment of Tourmaline as an Acoustic‐Surface‐Wave‐Delay Medium , 1972 .