Piezoelectric single crystals for ultrasonic transducers in biomedical applications.

Piezoelectric single crystals, which have excellent piezoelectric properties, have extensively been employed for various sensors and actuators applications. In this paper, the state-of-art in piezoelectric single crystals for ultrasonic transducer applications is reviewed. Firstly, the basic principles and design considerations of piezoelectric ultrasonic transducers will be addressed. Then, the popular piezoelectric single crystals used for ultrasonic transducer applications, including LiNbO3 (LN), PMN-PT and PIN-PMN-PT, will be introduced. After describing the preparation and performance of the single crystals, the recent development of both the single-element and array transducers fabricated using the single crystals will be presented. Finally, various biomedical applications including eye imaging, intravascular imaging, blood flow measurement, photoacoustic imaging, and microbeam applications of the single crystal transducers will be discussed.

[1]  D. A. Berlincourt,et al.  Piezoelectric Properties of Polycrystalline Lead Titanate Zirconate Compositions , 1960, Proceedings of the IRE.

[2]  Lihong V. Wang,et al.  Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo , 2012, Nature Medicine.

[3]  Jun Luo,et al.  Relaxor-PbTiO3 single crystals for various applications , 2012, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[4]  B. Auld,et al.  Modeling 1-3 composite piezoelectrics: thickness-mode oscillations , 1991, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[5]  E. Mclaughlin,et al.  Mechanical and thermal transitions in morphotropic PZN-PT and PMN-PT single crystals and their implication for sound projectors , 2007, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[6]  Shujun Zhang,et al.  Scaling effects of relaxor-PbTiO(3) crystals and composites for high frequency ultrasound. , 2010, Journal of applied physics.

[7]  S. Cochran,et al.  P3K-5 Passive Materials for High Frequency Ultrasound Components , 2007, 2007 IEEE Ultrasonics Symposium Proceedings.

[8]  A. Batten,et al.  PMN–PT single-crystal transducer for non-destructive evaluation , 2006 .

[9]  Zhongping Chen,et al.  Novel biomedical imaging that combines intravascular ultrasound (IVUS) and optical coherence tomography (OCT) , 2008, 2008 IEEE Ultrasonics Symposium.

[10]  Haosu Luo,et al.  Growth and characterization of relaxor ferroelectric PMNT single crystals , 1999 .

[11]  Qifa Zhou,et al.  Ultrahigh frequency lensless ultrasonic transducers for acoustic tweezers application , 2013, Biotechnology and bioengineering.

[12]  K. Kitamura,et al.  Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply system , 1999 .

[13]  G. Haertling Ferroelectric ceramics : History and technology , 1999 .

[14]  H. Ermert,et al.  Limited-angle spatial compound imaging of skin with high-frequency ultrasound (20 MHz) , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[15]  P. Rudolph,et al.  Orthoscopic investigation of the axial optical and compositional homogeneity of Czochralski grown LiNbO3 crystals , 1993 .

[16]  Zhuo Xu,et al.  Composition and phase dependence of the intrinsic and extrinsic piezoelectric activity of domain engineered (1-x)Pb(Mg(13)Nb(23))O(3)-xPbTiO(3) crystals. , 2010, Journal of applied physics.

[17]  K. Lam,et al.  High frequency PMN-PT single crystal focusing transducer fabricated by a mechanical dimpling technique. , 2013, Ultrasonics.

[18]  Qifa Zhou,et al.  Contrast-enhanced intravascular ultrasound pulse sequences for bandwidth-limited transducers. , 2013, Ultrasound in medicine & biology.

[19]  Qifa Zhou,et al.  Half-thickness inversion layer high-frequency ultrasonic transducers using LiNbO/sub 3/ single crystal , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[20]  F. Foster,et al.  Interdigital pair bonding for high frequency (20-50 MHz) ultrasonic composite transducers , 2001, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[21]  Thomas R. Shrout,et al.  Dielectric behavior of single crystals near the (1−X) Pb(Mg1/3Nb2/3)O3-(x) PbTiO3 morphotropic phase boundary , 1990 .

[22]  Thomas R. Shrout,et al.  Relaxor based ferroelectric single crystals for electro-mechanical actuators , 1997 .

[23]  Kwok-ho Lam,et al.  Enhanced magnetoelectric effect in a stress-biased lead magnesium niobate-lead titanate single crystal/Terfenol-D alloy magnetoelectric sensor , 2011 .

[24]  Y. Yamashita,et al.  Large Electromechanical Coupling Factors in Perovskite Binary Material System , 1994 .

[25]  Lei Sun,et al.  An FPGA-based open platform for ultrasound biomicroscopy , 2012, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[26]  Qifa Zhou,et al.  Thermal-independent properties of PIN-PMN-PT single-crystal linear-array ultrasonic transducers , 2012, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[27]  C. Brandle,et al.  Congruent Composition and Li‐Rich Phase Boundary of LiNbO3 , 1985 .

[28]  J. Cannata,et al.  PIN-PMN-PT single crystal high frequency ultrasound transducers for medical applications , 2008, 2008 IEEE Ultrasonics Symposium.

[29]  Helen Lai Wa Chan,et al.  Piezoelectric cement-based 1-3 composites , 2005 .

[30]  K. Rabe,et al.  EUS-guided FNA of centrally located lung tumours following a non-diagnostic bronchoscopy. , 2005, Lung cancer.

[31]  Jiyan Dai,et al.  High-frequency PIN–PMN–PT single crystal ultrasonic transducer for imaging applications , 2012 .

[32]  K. Kirk Shung,et al.  A High-Frame Rate Duplex Ultrasound Biomicroscopy for Small Animal Imaging In vivo , 2008, IEEE Transactions on Biomedical Engineering.

[33]  T. Shrout,et al.  Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals , 1997 .

[34]  Feng Chen,et al.  Photonic guiding structures in lithium niobate crystals produced by energetic ion beams , 2009 .

[35]  Y. Yamashita,et al.  Single Crystal of the Pb(Zn1/3Nb2/3)O3–PbTiO3 System Grown by the Vertical Bridgeman Method and Its Characterization , 1998 .

[36]  Qifa Zhou,et al.  Ultrahigh frequency ultrasound microbeam for biomedical applications , 2012, 2012 IEEE International Ultrasonics Symposium.

[37]  G. Kino,et al.  The design of efficient broad-band piezoelectric transducers , 1978 .

[38]  Lawrence E. Kinsler,et al.  Fundamentals of acoustics , 1950 .

[39]  Danfeng Yang,et al.  Growth and electrical properties of large size Pb(In1∕2Nb1∕2)O3–Pb(Mg1∕3Nb2∕3)O3–PbTiO3 crystals prepared by the vertical Bridgman technique , 2007 .

[40]  Thomas R. Shrout,et al.  The Effect of Growth Conditions on the Dielectric Properties of Pb(Zn1/3Nb2/3)O3 Single Crystals , 1997 .

[41]  Robert E. Newnham,et al.  PZT-epoxy piezoelectric transducers: A simplified fabrication procedure , 1981 .

[42]  Yiming Liu,et al.  Single crystal PMN-PT/Epoxy 1-3 composite for energy-harvesting application , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[43]  P Wilson,et al.  Wound healing assessment using 20 MHz ultrasound and photography , 2003, Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging.

[44]  Qifa Zhou,et al.  High Frequency PMN-PT 1-3 Composite Transducer for Ultrasonic Imaging Application , 2010, Ferroelectrics.

[45]  T. Shrout,et al.  Critical Property in Relaxor‐PbTiO3 Single Crystals – Shear Piezoelectric Response , 2011, Advanced functional materials.

[46]  M. Humayun,et al.  In vivo Sonothrombolysis of Ear Marginal Vein of Rabbits Monitored with High-frequency Ultrasound Needle Transducer. , 2013, Journal of medical and biological engineering.

[47]  K. Shung,et al.  A 30-MHz piezo-composite ultrasound array for medical imaging applications , 2002, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[48]  Hairong Zheng,et al.  Acoustic aligning and trapping of microbubbles in an enclosed PDMS microfluidic device , 2011 .

[49]  R. Krimholtz,et al.  New equivalent circuits for elementary piezoelectric transducers , 1970 .

[50]  M. Fejer,et al.  Preparation and characterization of off-congruent lithium niobate crystals , 1992 .

[51]  James F. Carroll,et al.  Improved stability for piezoelectric crystals grown in the lead indium niobate–lead magnesium niobate–lead titanate system , 2007 .

[52]  S. Rhee,et al.  60 MHz PMN-PT based 1-3 composite transducer for IVUS imaging , 2008, 2008 IEEE Ultrasonics Symposium.

[53]  Thomas R. Shrout,et al.  Complete set of material constants of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystal with morphotropic phase boundary composition , 2009 .

[54]  S. T. Laua,et al.  Ferroelectric lead magnesium niobate–lead titanate single crystals for ultrasonic hydrophone applications , 2004 .

[55]  Jiyan Dai,et al.  Temperature and electric field dependence of the dielectric property and domain evolution in [001]-oriented 0.34Pb(In1/2Nb1/2)O3–0.25Pb(Mg1/3Nb2/3)O3–0.41PbTiO3 single crystal , 2011 .

[56]  Carlos H. F. Alves,et al.  Design, fabrication, and evaluation of high frequency, single-element transducers incorporating different materials , 2002, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[57]  戴吉岩 Broad-band and high-temperature ultrasonic transducer fabricated using a Pb(In1/2Nb1/2)-Pb(Mg1/3Nb2/3)-PbTiO3 single crystal/epoxy 1–3 composite , 2011 .

[58]  Rui Zhang,et al.  Elastic, piezoelectric, and dielectric properties of multidomain 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 single crystals , 2001 .

[59]  Thomas R. Shrout,et al.  Characterization of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 ferroelectric crystal with enhanced phase transition temperatures , 2008 .

[60]  P. F. Bordui,et al.  Compositional uniformity in growth and poling of large-diameter lithium niobate crystals , 1991 .

[61]  Tomoaki Yamada,et al.  Piezoelectric and Elastic Properties of Lithium Niobate Single Crystals , 1967 .

[62]  K. Shung,et al.  Design of efficient, broadband single-element (20-80 MHz) ultrasonic transducers for medical imaging applications , 2003, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[63]  Jun Luo,et al.  Recent Developments on High Curie Temperature PIN-PMN-PT Ferroelectric Crystals. , 2011, Journal of crystal growth.

[64]  Jiyan Dai,et al.  Multiple matching scheme for broadband 0.72Pb(Mg1/3Nb2/3)O3−0.28PbTiO3 single crystal phased-array transducer , 2009 .

[65]  C. Pannell,et al.  Broadband monolithic acousto-optic tunable filter. , 2000, Optics letters.

[66]  Thomas R. Shrout,et al.  Characteristics of relaxor-based piezoelectric single crystals for ultrasonic transducers , 1996, 1996 IEEE Ultrasonics Symposium. Proceedings.

[67]  K. Lam,et al.  Lead-free piezoelectric single crystal based 1–3 composites for ultrasonic transducer applications , 2012 .

[68]  Weizhuo Zhong,et al.  Growth and piezoelectric properties of Pb(Mg1/3Nb2/3)O3–PbTiO3 crystals by the modified Bridgman technique , 2001 .

[69]  Ronald H Silverman,et al.  75 MHz Ultrasound Biomicroscopy of Anterior Segment of Eye , 2006, Ultrasonic imaging.

[70]  Hairong Zheng,et al.  A Novel Modulated Excitation Imaging System for Microultrasound , 2013, IEEE Transactions on Biomedical Engineering.

[71]  Shujun Zhang,et al.  Thickness‐Dependent Properties of Relaxor‐PbTiO3 Ferroelectrics for Ultrasonic Transducers , 2010, Advanced functional materials.

[72]  S. Saitoh,et al.  Crystal Growth of Pb[(Zn1/3Nb2/3)0.91Ti0.09]O3 Using a Crucible by the Supported Bridgman Method , 2000 .

[73]  Thomas R. Shrout,et al.  Relaxor-PT single crystals: Observations and developments , 2009, 2009 18th IEEE International Symposium on the Applications of Ferroelectrics.

[74]  J. Unsworth,et al.  Simple model for piezoelectric ceramic/polymer 1-3 composites used in ultrasonic transducer applications , 1989, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[75]  Qifa Zhou,et al.  An open system for intravascular ultrasound imaging , 2012, 2012 IEEE International Ultrasonics Symposium.

[76]  Hairong Zheng,et al.  Precise and programmable manipulation of microbubbles by two-dimensional standing surface acoustic waves , 2012 .

[77]  H. Saunders,et al.  Fundamentals of Acoustics (3rd Ed.) , 1983 .

[78]  H. Chan,et al.  Frequency response of magnetoelectric 1–3-type composites , 2010 .

[79]  Qifa Zhou,et al.  PMN-PT single crystal, high-frequency ultrasonic needle transducers for pulsed-wave Doppler application , 2007, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[80]  C. Choy,et al.  Single crystal PMN-0.33PT/epoxy 1-3 composites for ultrasonic transducer applications , 2003, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[81]  K. Kirk Shung,et al.  Passive materials for high-frequency ultrasound transducers , 1999, Medical Imaging.

[82]  Haosu Luo,et al.  Peculiar properties of a high Curie temperature Pb(In1/2Nb1/2)O3–PbTiO3 single crystal grown by the modified Bridgman technique , 2002 .

[83]  N. Neumann,et al.  Pyroelectric performances of relaxor‐based ferroelectric single crystals and related infrared detectors , 2011 .

[84]  F. Galasso,et al.  Preparation of Single Crystals of Complex Perovskite Ferroelectric and Semiconducting Compounds , 1965 .

[85]  K. Cheung,et al.  PMN-PT single crystal focusing transducer fabricated using a mechanical dimpling technique. , 2012, Ultrasonics.

[86]  A. Safari,et al.  Piezoelectric composites for sensor and actuator applications , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[87]  K. Shung,et al.  Fabrication and performance of endoscopic ultrasound radial arrays based on PMN-PT single crystal/epoxy 1-3 composite , 2011, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[88]  Shiro Urayama,et al.  Endoscopic ultrasound-guided celiac plexus neurolysis for pancreatic cancer pain: a single-institution experience and review of the literature. , 2006, The journal of supportive oncology.

[89]  Haosu Luo,et al.  Piezoelectrically actuated ejector using PMN–PT single crystal , 2005 .

[90]  Jung Hyui Alumina/Epoxy Nanocomposite Matching Layers for High-Frequency Ultrasound Transducer Application , 2009 .

[91]  Thomas R. Shrout,et al.  The Role of Processing Variables in the Flux Growth of Lead Zinc Niobate-Lead Titanate Relaxor Ferroelectric Single Crystals , 1996 .

[92]  K. Lam,et al.  Lead-free piezoelectric BNKLT 1–3 composites , 2008 .

[93]  Shujun Zhang,et al.  High performance ferroelectric relaxor-PbTiO3 single crystals: Status and perspective , 2012 .

[94]  M. Schmidt,et al.  A high-frequency, high-stiffness piezoelectric actuator for microhydraulic applications , 2002 .

[95]  K. Shung,et al.  Single crystal PZN/PT-polymer composites for ultrasound transducer applications , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[96]  Wenwu Cao,et al.  Characterization of piezoelectric materials using ultrasonic and resonant techniques , 1998, Medical Imaging.

[97]  G. A. Smolenskii,et al.  DIELECTRIC POLARIZATION AND LOSSES OF SOME COMPLEX COMPOUNDS , 1958 .

[98]  Wesley S. Hackenberger,et al.  High performance single crystal piezoelectrics: applications and issues , 2002 .

[99]  R. Roth,et al.  Properties of piezoelectric ceramics in the solid-solution series lead titanate-lead zirconate-lead oxide: Tin oxide and lead titanate-lead hafnate , 1955 .

[100]  Wenwu Cao,et al.  High frequency properties of passive materials for ultrasonic transducers , 2001, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[101]  Qifa Zhou,et al.  Design and fabrication of PIN-PMN-PT single-crystal high-frequency ultrasound transducers , 2009, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[102]  Qifa Zhou,et al.  Investigating contactless high frequency ultrasound microbeam stimulation for determination of invasion potential of breast cancer cells , 2013, Biotechnology and bioengineering.