Measure-preserving integrators for molecular dynamics in the isothermal–isobaric ensemble derived from the Liouville operator

[1]  T. Darden,et al.  Liquid–vapour equilibrium of n -alkanes using interface simulations , 2006 .

[2]  G. S. Ezra Reversible measure-preserving integrators for non-Hamiltonian systems. , 2006, The Journal of chemical physics.

[3]  M. Tuckerman,et al.  Molecular dynamics simulations of aqueous solutions of ethanolamines. , 2006, The journal of physical chemistry. B.

[4]  M. Tuckerman,et al.  A Liouville-operator derived measure-preserving integrator for molecular dynamics simulations in the isothermal–isobaric ensemble , 2006 .

[5]  A. Sergi Phase space flows for non-Hamiltonian systems with constraints. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  V. E. Tarasov Stationary Solutions of Liouville Equations for Non-Hamiltonian Systems , 2005, cond-mat/0602409.

[7]  C. Vega,et al.  Radial distribution functions and densities for the SPC/E, TIP4P and TIP5P models for liquid water and ices Ih, Ic, II, III, IV, V, VI, VII, VIII, IX, XI and XII. , 2005, Physical chemistry chemical physics : PCCP.

[8]  V. E. Tarasov Phase-space metric for non-Hamiltonian systems , 2005, math/0602433.

[9]  Christopher R Sweet,et al.  The canonical ensemble via symplectic integrators using Nosé and Nosé-Poincaré chains. , 2004, The Journal of chemical physics.

[10]  Alessandro Sergi,et al.  Generalized bracket formulation of constrained dynamics in phase space. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  G. Ciccotti,et al.  Constant pressure-constant temperature molecular dynamics: a correct constrained NPT ensemble using the molecular virial , 2003 .

[12]  M. Ferrario,et al.  Non-Hamiltonian equations of motion with a conserved energy. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  G. Ciccotti,et al.  Non-Hamiltonian molecular dynamics: Generalizing Hamiltonian phase space principles to non-Hamiltonian systems , 2001 .

[14]  P. Hünenberger,et al.  A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations , 2001, J. Comput. Chem..

[15]  Mark E. Tuckerman,et al.  Exploiting multiple levels of parallelism in Molecular Dynamics based calculations via modern techniques and software paradigms on distributed memory computers , 2000 .

[16]  Robert D. Skeel,et al.  Nonlinear Stability Analysis of Area-Preserving Integrators , 2000, SIAM J. Numer. Anal..

[17]  M. Tuckerman,et al.  Generalized Gaussian moment thermostatting: A new continuous dynamical approach to the canonical ensemble , 2000 .

[18]  B. Laird,et al.  Symplectic algorithm for constant-pressure molecular dynamics using a Nosé–Poincaré thermostat , 1999, physics/9903009.

[19]  Stephen D. Bond,et al.  The Nosé-Poincaré Method for Constant Temperature Molecular Dynamics , 1999 .

[20]  M. Tuckerman,et al.  Comment on “Simple reversible molecular dynamics algorithms for Nosé–Hoover chain dynamics” [J. Chem. Phys. 107, 9514 (1997)] , 1999 .

[21]  M. Tuckerman,et al.  On the classical statistical mechanics of non-Hamiltonian systems , 1999 .

[22]  Eric W. Lemmon,et al.  Thermophysical Properties of Fluid Systems , 1998 .

[23]  J. Reimers,et al.  Unit cells for the simulation of hexagonal ice , 1997 .

[24]  Mark E. Tuckerman,et al.  Explicit reversible integrators for extended systems dynamics , 1996 .

[25]  Berend Smit,et al.  Computer simulations of vapor-liquid phase equilibria of n-alkanes , 1995 .

[26]  M. Klein,et al.  Constant pressure molecular dynamics algorithms , 1994 .

[27]  Michele Parrinello,et al.  Integrating the Car–Parrinello equations. I. Basic integration techniques , 1994 .

[28]  Glenn J. Martyna,et al.  Molecular dynamics simulations of a protein in the canonical ensemble , 1993 .

[29]  M. Klein,et al.  Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .

[30]  Mark E. Tuckerman,et al.  Reversible multiple time scale molecular dynamics , 1992 .

[31]  M. Suzuki,et al.  General theory of fractal path integrals with applications to many‐body theories and statistical physics , 1991 .

[32]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[33]  Creutz,et al.  Higher-order hybrid Monte Carlo algorithms. , 1989, Physical review letters.

[34]  Hoover,et al.  Constant-pressure equations of motion. , 1986, Physical review. A, General physics.

[35]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[36]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[37]  H. C. Andersen Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations , 1983 .

[38]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[39]  H. C. Andersen Molecular dynamics simulations at constant pressure and/or temperature , 1980 .

[40]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[41]  W. Kauzmann,et al.  The Structure and Properties of Water , 1969 .

[42]  H. Trotter On the product of semi-groups of operators , 1959 .