Nonseparable Space-Time Covariance Models: Some Parametric Families
暂无分享,去创建一个
D. E. Myers | D. Posa | D. Myers | D. Posa | S. De Iaco | S. De Iaco
[1] Wei-Liem Loh,et al. Estimating structured correlation matrices in smooth Gaussian random field models , 2000 .
[2] Phaedon C. Kyriakidis,et al. Geostatistical Space–Time Models: A Review , 1999 .
[3] S. De Iacoa,et al. Space – time analysis using a general product – sum model , 2000 .
[4] Mike Rees,et al. 5. Statistics for Spatial Data , 1993 .
[5] N. Cressie,et al. Classes of nonseparable, spatio-temporal stationary covariance functions , 1999 .
[6] G. Christakos. On the Problem of Permissible Covariance and Variogram Models , 1984 .
[7] I. Rodríguez‐Iturbe,et al. The design of rainfall networks in time and space , 1974 .
[8] George Christakos,et al. Random Field Models in Earth Sciences , 1992 .
[9] D. Myers,et al. Space–time analysis using a general product–sum model , 2001 .
[10] G. Matheron. The intrinsic random functions and their applications , 1973, Advances in Applied Probability.
[11] Noel A Cressie,et al. Statistics for Spatial Data. , 1992 .
[12] Shahrokh Rouhani,et al. Space-Time Kriging of Groundwater Data , 1989 .
[13] D. F. Hays,et al. Table of Integrals, Series, and Products , 1966 .
[14] D. Myers,et al. Problems in space-time kriging of geohydrological data , 1990 .
[15] Jean-Paul Chilbs,et al. Geostatistics , 2000, Technometrics.
[16] D. Myers,et al. Estimating and modeling space–time correlation structures , 2001 .
[17] Donato Posa,et al. Spatial-Temporal Modeling of SO2 in Milan District , 1997 .
[18] Donato Posa,et al. Product‐sum covariance for space‐time modeling: an environmental application , 2001 .
[19] D. Myers,et al. Variograms with zonal anisotropies and noninvertible kriging systems , 1990 .
[20] Donato Posa,et al. A simple description of spatial-temporal processes , 1993 .
[21] I. S. Gradshteyn,et al. Table of Integrals, Series, and Products , 1976 .
[22] Donald E. Myers,et al. INTERPOLATION WITH POSITIVE DEFINITE FUNCTIONS , 1988 .
[23] Richard A. Davis,et al. Time Series: Theory and Methods , 2013 .