Local circuit neurons immunoreactive for calretinin, calbindin D‐28k or parvalbumin in monkey prefronatal cortex: Distribution and morphology

In the cerebral cortex, local circuit neurons provide critical inhibitory control over the activity of pyramidal neurons, the major class of excitatory efferent cortical cells. The calciumbinding proteins, calretinin, calbindin, and parvalbumin, are expressed in a variety of cortical local circuit neurons. However, in the primate prefrontal cortex, relatively little is known, especially with regard to calretinin, about the specific classes or distribution of local circuit neurons that contain these calcium‐binding proteins. In this study, we used immunohistochemical techniques to characterize and compare the morphological features and distribution in macaque monkey prefrontal cortex of local circuit neurons that contain each of these calcium‐binding proteins.

[1]  D. Pandya,et al.  Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey , 1989, The Journal of comparative neurology.

[2]  J. DeFelipe,et al.  High‐Resolution Light and Electron Microscopic Immunocytochemistry of Colocalized GABA and Calbindin D‐28k in Somata and Double Bouquet Cell Axons of Monkey Somatosensory Cortex , 1992, The European journal of neuroscience.

[3]  D. Jacobowitz,et al.  Isolation, partial amino acid sequence, and immunohistochemical localization of a brain-specific calcium-binding protein. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[4]  D. Lewis,et al.  Nonphosphorylated neurofilament protein and calbindin immunoreactivity in layer III pyramidal neurons of human neocortex. , 1992, Cerebral cortex.

[5]  J. Miller,et al.  Immunohistochemical localization of calcium-binding protein in the cerebellum, hippocampal formation and olfactory bulb of the rat , 1982, Brain Research.

[6]  M. Akil,et al.  Differential distribution of parvalbumin-immunoreactive pericellular clusters of terminal boutons in developing and adult monkey neocortex , 1992, Experimental Neurology.

[7]  E. G. Jones,et al.  Varieties and distribution of non‐pyramidal cells in the somatic sensory cortex of the squirrel monkey , 1975, The Journal of comparative neurology.

[8]  J. Morrison,et al.  Neocortical neuronal subpopulations labeled by a monoclonal antibody to calbindin exhibit differential vulnerability in Alzheimer's disease , 1991, Experimental Neurology.

[9]  M Marín-Padilla,et al.  Three‐dimensional structural organization of layer I of the human cerebral cortex: A golgi study , 1990, The Journal of comparative neurology.

[10]  P. Somogyi,et al.  An approach to tracing neuron networks in the cerebral cortex and basal ganglia. Combination of golgi staining, retrograde transport of horseradish peroxidase and anterograde degeneration of synaptic boutons in the same material , 1979, Neuroscience.

[11]  J. Lund,et al.  Anatomical organization of primate visual cortex area VII , 1981, The Journal of comparative neurology.

[12]  M. Marín‐padilla Double origin of the pericellular baskets of the pyramidal cells of the human motor cortex: a Golgi study. , 1969, Brain research.

[13]  E. G. Jones,et al.  A microcolumnar structure of monkey cerebral cortex revealed by immunocytochemical studies of double bouquet cell axons , 1990, Neuroscience.

[14]  M. Marín‐padilla Prenatal and early postnatal ontogenesis of the human motor cortex: a golgi study. II. The basket-pyramidal system. , 1970, Brain research.

[15]  P. Morgane,et al.  Calretinin-immunoreactive neurons in the primary visual cortex of dolphin and human brains , 1992, Brain Research.

[16]  P. Derer,et al.  Cajal-retzius cell ontogenesis and death in mouse brain visualized with horseradish peroxidase and electron microscopy , 1990, Neuroscience.

[17]  S. Foote,et al.  Corticotropin‐releasing factor immunoreactivity in monkey neocortex: An immunohistochemical analysis , 1989, The Journal of comparative neurology.

[18]  C. Ribak,et al.  Aspinous and sparsely-spinous stellate neurons in the visual cortex of rats contain glutamic acid decarboxylase , 1978, Journal of neurocytology.

[19]  J. Szentágothai The ‘module-concept’ in cerebral cortex architecture , 1975, Brain Research.

[20]  S. Hsu,et al.  Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. , 1981, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[21]  J. Rogers,et al.  Calretinin and calbindin-D28k in rat brain: Patterns of partial co-localization , 1992, Neuroscience.

[22]  F. Benes,et al.  Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. , 1991, Archives of general psychiatry.

[23]  D. Jacobowitz,et al.  Immunocytochemical localization of calretinin in the forebrain of the rat , 1991, The Journal of comparative neurology.

[24]  A. Hendrickson,et al.  Calcium‐binding proteins as markers for subpopulations of GABAergic neurons in monkey striate cortex , 1990, The Journal of comparative neurology.

[25]  E. Jones,et al.  Cajal-Retzius neurons in developing monkey neocortex show immunoreactivity for calcium binding proteins , 1990, Journal of neurocytology.

[26]  O. Wolkowitz,et al.  Structural brain pathology in schizophrenia revisited. Prefrontal cortex pathology is inversely correlated with cerebrospinal fluid levels of homovanillic acid. , 1987, Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology.

[27]  J. Lund,et al.  Local circuit neurons of developing and mature macaque prefrontal cortex: Golgi and immunocytochemical characteristics , 1993, The Journal of comparative neurology.

[28]  A. Walker,et al.  A cytoarchitectural study of the prefrontal area of the macaque monkey , 1940 .

[29]  E. G. Jones,et al.  Synapses of double bouquet cells in monkey cerebral cortex visualized by calbindin immunoreactivity , 1989, Brain Research.

[30]  M. Akil,et al.  Postnatal development of parvalbumin immunoreactivity in axon terminals op basket and chandelier neurons in monkey neocortex , 1992, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[31]  P. Emson,et al.  Cerebral cortical calbindin D28K and parvalbumin neurones in Down's syndrome , 1990, Neuroscience Letters.

[32]  P. Somogyi,et al.  Synaptic connections of morphologically identified and physiologically characterized large basket cells in the striate cortex of cat , 1983, Neuroscience.

[33]  E G Jones,et al.  Visualization of chandelier cell axons by parvalbumin immunoreactivity in monkey cerebral cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[34]  S. Hendry,et al.  GABA neuronal subpopulations in cat primary auditory cortex: co-localization with calcium binding proteins , 1991, Brain Research.

[35]  I. Kostović,et al.  Prenatal development of neurons in the human prefrontal cortex: I. A qualitative Golgi study , 1988, The Journal of comparative neurology.

[36]  D. Jacobowitz,et al.  Immunohistochemical localization of calretinin in the rat hindbrain , 1991, The Journal of comparative neurology.

[37]  M J Campbell,et al.  An immunohistochemical characterization of somatostatin‐28 and somatostatin‐281–12 in monkey prefrontal cortex , 1986, The Journal of comparative neurology.

[38]  D. Lewis,et al.  Antibodies directed against tyrosine hydroxylase differentially recognize noradrenergic axons in monkey neocortex , 1989, Brain Research.

[39]  J. Rogers,et al.  Calretinin in rat brain: An immunohistochemical study , 1992, Neuroscience.

[40]  E. G. Jones,et al.  Differential Calcium Binding Protein Immunoreactivity Distinguishes Classes of Relay Neurons in Monkey Thalamic Nuclei , 1989, The European journal of neuroscience.

[41]  I. Ferrer,et al.  Calbindin immunoreactivity in normal human temporal neocortex , 1992, Brain Research.

[42]  D. Lewis,et al.  Heterogeneity of layer II neurons in human entorhinal cortex , 1992, The Journal of comparative neurology.

[43]  M. Gayoso,et al.  A versatile and simple method for staining nervous tissue using Giemsa dye , 1985, Journal of Neuroscience Methods.

[44]  J. Morrison,et al.  Ultrastructural analysis of somatostatin‐immunoreactive neurons and synapses in the temporal and occipital cortex of the macaque monkey , 1989, The Journal of comparative neurology.

[45]  J. Lund Organization of neurons in the visual cortex, area 17, of the monkey (Macaca mulatta) , 1973, The Journal of comparative neurology.

[46]  J. Lund,et al.  Heterogeneity of chandelier neurons in monkey neocortex: Corticotropin‐releasing factor‐and parvalbumin‐immunoreactive populations , 1990, The Journal of comparative neurology.

[47]  P. Goldman-Rakic,et al.  The synaptology of parvalbumin‐immunoreactive neurons in the primate prefrontal cortex , 1992, The Journal of comparative neurology.

[48]  Alan Peters,et al.  Smooth and sparsely‐spined stellate cells in the visual cortex of the rat: A study using a combined golgi‐electron microscope technique , 1978, The Journal of comparative neurology.

[49]  J. Morrison,et al.  Distribution of parvalbumin immunoreactivity in the visual cortex of Old World monkeys and humans , 1990, The Journal of comparative neurology.

[50]  F. Valverde Short axon neuronal subsystems in the visual cortex of the monkey. , 1971, The International journal of neuroscience.

[51]  R. S. Sloviter Calcium‐binding protein (calbindin‐D28k) and parvalbumin immunocytochemistry: Localization in the rat hippocampus with specific reference to the selective vulnerability of hippocampal neurons to seizure activity , 1989, The Journal of comparative neurology.

[52]  D. Jacobowitz,et al.  Calretinin is present in non-pyramidal cells of the rat hippocampus—II. Co-existence with other calcium binding proteins and gaba , 1992, Neuroscience.

[53]  J. Miller,et al.  Calcium-binding protein distribution in the rat brain , 1982, Brain Research.

[54]  M. Celio,et al.  Calbindin D-28k and parvalbumin in the rat nervous system , 1990, Neuroscience.

[55]  P. Hof,et al.  Regional distribution of neurofilament and calcium-binding proteins in the cingulate cortex of the macaque monkey. , 1992, Cerebral cortex.

[56]  J. Rogers Immunohistochemical markers in rat cortex: co-localization of calretinin and calbindin-D28k with neuropeptides and GABA , 1992, Brain Research.