Bounded Linear Logic, Revisited

We present QBAL, an extension of Girard, Scedrov and Scott's bounded linear logic. The main novelty of the system is the possibility of quantifying over resource variables. This generalization makes bounded linear logic considerably more flexible, while preserving soundness and completeness for polynomial time. In particular, we provide compositional embeddings of Leivant's RRW and Hofmann's LFPL into QBAL.

[1]  Vincent Danos,et al.  Linear logic and elementary time , 2003, Inf. Comput..

[2]  Jean-Yves Marion,et al.  Efficient First Order Functional Program Interpreter with Time Bound Certifications , 2000, LPAR.

[3]  Hongwei Xi,et al.  Dependent ML An approach to practical programming with dependent types , 2007, Journal of Functional Programming.

[4]  Ulrich Schöpp,et al.  Stratified Bounded Affine Logic for Logarithmic Space , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[5]  Daniel Leivant,et al.  Stratified functional programs and computational complexity , 1993, POPL '93.

[6]  Stephen A. Cook,et al.  A new recursion-theoretic characterization of the polytime functions , 1992, STOC '92.

[7]  Andrea Asperti,et al.  Intuitionistic Light Affine Logic , 2002, TOCL.

[8]  Andrzej S. Murawski,et al.  On an interpretation of safe recursion in light affine logic , 2004, Theor. Comput. Sci..

[9]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[10]  Andre Scedrov,et al.  Bounded Linear Logic: A Modular Approach to Polynomial-Time Computability , 1992, Theor. Comput. Sci..

[11]  Daniel Leivant,et al.  A foundational delineation of computational feasibility , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[12]  Yves Lafont,et al.  Soft linear logic and polynomial time , 2004, Theor. Comput. Sci..

[13]  Jean-Yves Girard,et al.  Light Linear Logic , 1998, Inf. Comput..

[14]  Martin Hofmann Programming languages capturing complexity classes , 2000, SIGA.

[15]  Martin Hofmann,et al.  Linear types and non-size-increasing polynomial time computation , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[16]  Lev Gordeev,et al.  Basic proof theory , 1998 .

[17]  M. Hofmanna,et al.  Realizability models for BLL-like languages , 2000 .

[18]  M. Nivat Fiftieth volume of theoretical computer science , 1988 .

[19]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[20]  Martin Hofmann,et al.  Bounded Linear Logic, Revisited , 2009, TLCA.