Quantum-enabled temporal and spectral mode conversion of microwave signals

Electromagnetic waves are ideal candidates for transmitting information in a quantum network as they can be routed rapidly and efficiently between locations using optical fibres or microwave cables. Yet linking quantum-enabled devices with cables has proved difficult because most cavity or circuit quantum electrodynamics systems used in quantum information processing can only absorb and emit signals with a specific frequency and temporal envelope. Here we show that the temporal and spectral content of microwave-frequency electromagnetic signals can be arbitrarily manipulated with a flexible aluminium drumhead embedded in a microwave circuit. The aluminium drumhead simultaneously forms a mechanical oscillator and a tunable capacitor. This device offers a way to build quantum microwave networks using separate and otherwise mismatched components. Furthermore, it will enable the preparation of non-classical states of motion by capturing non-classical microwave signals prepared by the most coherent circuit quantum electrodynamics systems.

[1]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[2]  S. Girvin,et al.  Introduction to quantum noise, measurement, and amplification , 2008, 0810.4729.

[3]  Leila R. Vale,et al.  Quantum superposition of a single microwave photon in two different ’colour’ states , 2011, 1106.2523.

[4]  Hailin Wang,et al.  Optomechanical Dark Mode , 2012, Science.

[5]  Castellanos Beltran,et al.  Development of a Josephson parametric amplifier for the preparation and detection of nonclassical states of microwave fields , 2010 .

[6]  Samuel L. Braunstein,et al.  Quantum-state transfer from light to macroscopic oscillators , 2003 .

[7]  G. Rempe,et al.  An elementary quantum network of single atoms in optical cavities , 2012, Nature.

[8]  Yoshihisa Yamamoto,et al.  Indistinguishable photons from a single-photon device , 2002, Nature.

[9]  S. Deléglise,et al.  Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode , 2011, Nature.

[10]  Nicolas Gisin,et al.  Heralded single-phonon preparation, storage, and readout in cavity optomechanics. , 2013, Physical review letters.

[11]  Ida-Maria Svensson,et al.  Storage and on-demand release of microwaves using superconducting resonators with tunable coupling , 2014, 1406.2005.

[12]  O. Arcizet,et al.  Resolved Sideband Cooling of a Micromechanical Oscillator , 2007, 0709.4036.

[13]  Erik Lucero,et al.  Catch and release of microwave photon states. , 2012, Physical review letters.

[14]  R. G. Rogers Low Phase Noise Microwave Oscillator Design , 1991 .

[15]  Luigi Frunzio,et al.  Full coherent frequency conversion between two propagating microwave modes. , 2012, Physical review letters.

[16]  S. Girvin,et al.  Wiring up quantum systems , 2008, Nature.

[17]  Bruce P. Gibbs,et al.  Advanced Kalman Filtering, Least-Squares and Modeling: A Practical Handbook , 2011 .

[18]  T. Palomaki,et al.  Entangling Mechanical Motion with Microwave Fields , 2013, Science.

[19]  G. C. Hilton,et al.  Amplification and squeezing of quantum noise with a tunable Josephson metamaterial , 2008, 0806.0659.

[20]  Thomas Purdy,et al.  Bidirectional and efficient conversion between microwave and optical light , 2014 .

[21]  Michael S. Allman,et al.  Low-loss superconducting resonant circuits using vacuum-gap-based microwave components , 2010 .

[22]  Oskar Painter,et al.  Coherent optical wavelength conversion via cavity optomechanics , 2012, Nature Communications.

[23]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[24]  J. Harlow Microwave Electromechanics: Measuring and Manipulating the Quantum State of a Macroscopic Mechanical Oscillator , 2013 .

[25]  J. Rarity,et al.  Photonic quantum technologies , 2009, 1003.3928.

[26]  S. Berger,et al.  Microwave-Controlled Generation of Shaped Single Photons in Circuit Quantum Electrodynamics , 2013, 1308.4094.

[27]  K. Koshino,et al.  Microwave down-conversion with an impedance-matched Λ system in driven circuit QED. , 2014, Physical review letters.

[28]  Rupp,et al.  Observation of parametric amplification and deamplification in a Josephson parametric amplifier. , 1989, Physical review. A, General physics.

[29]  H. Paul,et al.  Measuring the quantum state of light , 1997 .

[30]  J. B. Hertzberg,et al.  Preparation and detection of a mechanical resonator near the ground state of motion , 2009, Nature.

[31]  Jay M. Gambetta,et al.  Time-reversal symmetrization of spontaneous emission for quantum state transfer , 2013, 1308.3471.

[32]  A. D. Boozer,et al.  Trapped atoms in cavity QED: coupling quantized light and matter , 2005 .

[33]  M. Devoret,et al.  Widely tunable, nondegenerate three-wave mixing microwave device operating near the quantum limit. , 2012, Physical review letters.

[34]  Mika A. Sillanpää,et al.  Microwave amplification with nanomechanical resonators , 2013, ISSCC.

[35]  A. Lambrecht,et al.  Surface plasmon modes and the Casimir energy. , 2005, Physical review letters.

[36]  C. Speake,et al.  Forces between conducting surfaces due to spatial variations of surface potential. , 2003, Physical review letters.

[37]  Lin Tian,et al.  Storing optical information as a mechanical excitation in a silica optomechanical resonator. , 2011, Physical review letters.

[38]  L Frunzio,et al.  Generating single microwave photons in a circuit. , 2007, Nature.

[39]  Alexander N. Korotkov,et al.  Flying microwave qubits with nearly perfect transfer efficiency , 2011, 1103.0592.

[40]  R. J. Schoelkopf,et al.  Resolving photon number states in a superconducting circuit , 2007, Nature.

[41]  Boualem Boashash,et al.  Note on the use of the Wigner distribution for time-frequency signal analysis , 1988, IEEE Trans. Acoust. Speech Signal Process..

[42]  T. A. Palomaki,et al.  Coherent state transfer between itinerant microwave fields and a mechanical oscillator , 2012, Nature.

[43]  J. Cirac,et al.  Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network , 1996, quant-ph/9611017.