Embedding a Hamiltonian cycle in the crossed cube with two required vertices in the fixed positions

Abstract A Hamiltonian graph G is said to be panpositionably Hamiltonian if, for any two distinct vertices x and y of G, there is a Hamiltonian cycle C of G having dC(x, y) = l for any integer l satisfying d G ( x , y ) ⩽ l ⩽ | V ( G ) | 2 , where dG(x, y) (respectively, dC(x, y)) denotes the distance between vertices x and y in G (respectively, C), and ∣V(G)∣ denotes the total number of vertices of G. As the importance of Hamiltonian properties for data communication among units in an interconnected system, the panpositionable Hamiltonicity involves more flexible message transmission. In this paper, we study this property with respect to the class of crossed cubes, which is a popular variant of the hypercube network.

[1]  Jimmy J. M. Tan,et al.  Fault-tolerant cycle-embedding of crossed cubes , 2003, Inf. Process. Lett..

[2]  Saïd Bettayeb,et al.  Embedding Binary Trees into Crossed Cubes , 1995, IEEE Trans. Computers.

[3]  M. H. Schultz,et al.  Topological properties of hypercubes , 1988, IEEE Trans. Computers.

[4]  Krishnan Padmanabhan,et al.  the Twisted Cube Topology for Multiprocessors: A Study in Network Asymmetry , 1991, J. Parallel Distributed Comput..

[5]  Xiaohua Jia,et al.  Node-pancyclicity and edge-pancyclicity of crossed cubes , 2005, Inf. Process. Lett..

[6]  F. Leighton,et al.  Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes , 1991 .

[7]  Hyeong-Seok Lim,et al.  Many-to-Many Disjoint Path Covers in Hypercube-Like Interconnection Networks with Faulty Elements , 2006, IEEE Trans. Parallel Distributed Syst..

[8]  Lih-Hsing Hsu,et al.  Edge Congestion and Topological Properties of Crossed Cubes , 2000, IEEE Trans. Parallel Distributed Syst..

[9]  Cheng-Kuan Lin,et al.  Graph Theory and Interconnection Networks , 2008 .

[10]  Priyalal Kulasinghe,et al.  Connectivity of the Crossed Cube , 1997, Inf. Process. Lett..

[11]  Cheng-Kuan Lin,et al.  Embedding paths of variable lengths into hypercubes with conditional link-faults , 2009, Parallel Comput..

[12]  Xiaohua Jia,et al.  Complete path embeddings in crossed cubes , 2006, Inf. Sci..

[13]  Kemal Efe,et al.  The Crossed Cube Architecture for Parallel Computation , 1992, IEEE Trans. Parallel Distributed Syst..

[14]  David J. Evans,et al.  The locally twisted cubes , 2005, Int. J. Comput. Math..

[15]  Xiaohua Jia,et al.  Optimal path embedding in crossed cubes , 2005, IEEE Transactions on Parallel and Distributed Systems.

[16]  J. A. Bondy,et al.  Graph Theory , 2008, Graduate Texts in Mathematics.

[17]  Kemal Efe,et al.  Topological Properties of the Crossed Cube Architecture , 1994, Parallel Comput..

[18]  J. E. Williamson Panconnected graphs II , 1977 .

[19]  Junming Xu Topological Structure and Analysis of Interconnection Networks , 2002, Network Theory and Applications.

[20]  Jun-Ming Xu,et al.  Panconnectivity and edge-fault-tolerant pancyclicity of augmented cubes , 2007, Parallel Comput..

[21]  Jimmy J. M. Tan,et al.  Panpositionable hamiltonicity of the alternating group graphs , 2007 .

[22]  Jimmy J. M. Tan,et al.  Panpositionable hamiltonicity and panconnectivity of the arrangement graphs , 2008, Appl. Math. Comput..

[23]  Shi-Jinn Horng,et al.  Geodesic-pancyclicity and fault-tolerant panconnectivity of augmented cubes , 2009, Appl. Math. Comput..

[24]  Jimmy J. M. Tan,et al.  On the Fault-Tolerant Hamiltonicity of Faulty Crossed Cubes , 2002, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[25]  Kemal Efe A Variation on the Hypercube with Lower Diameter , 1991, IEEE Trans. Computers.

[26]  Cheng-Kuan Lin,et al.  Panpositionable Hamiltonian Graphs , 2006, Ars Comb..