Scaling Laws for Plasma Focus Machines from Numerical Experiments

Numerical experiments carried out systematically using the Lee Model code unveil insightful and practical wide-ranging scaling laws for plasma focus machines for nuclear fusion energy as well as other ap- plications. An essential feature of the numerical experiments is the fitting of a measured current waveform to the computed waveform to calibrate the model for the particular machine, thus providing a reliable and rig- orous determination of the all-important pinch current. The thermodynamics and radiation properties of the resulting plasma are then reliably determined. This paper provides an overview of the recently published scaling laws for neutron (Yn) and neon soft x-ray, SXR (Ysxr) yields: Yn = 3.2x10 11 Ipinch 4.5 ; Yn = 1.8x10 10 Ipeak 3.8 ; Ipeak (0.3 to 5.7), Ipinch (0.2 to 2.4) in MA.

[1]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[2]  Sing H. Lee,et al.  Neutron yield saturation in plasma focus: A fundamental cause , 2009 .

[3]  R. Rawat,et al.  Numerical experiments on plasma focus neon soft x-ray scaling , 2009 .

[4]  R. Rawat,et al.  Soft x-ray yield from NX2 plasma focus , 2009 .

[5]  Rajdeep Singh Rawat,et al.  The effect of anode shape on neon soft x-ray emissions and current sheath configuration in plasma focus device , 2009 .

[6]  S. Lee Current and neutron scaling for megajoule plasma focus machines , 2008 .

[7]  R. Rawat,et al.  Numerical experiments on plasma focus pinch current limitation , 2008 .

[8]  R. Rawat,et al.  Computing plasma focus pinch current from total current measurement , 2008 .

[9]  S. Saw,et al.  Neutron Scaling Laws from Numerical Experiments , 2008 .

[10]  S. Saw,et al.  Pinch current limitation effect in plasma focus , 2008 .

[11]  M. Paduch,et al.  Plasma dynamics in the PF-1000 device under full-scale energy storage: II. Fast electron and ion characteristics versus neutron emission parameters and gun optimization perspectives , 2007 .

[12]  T. L. Tan,et al.  An improved radiative plasma focus model calibrated for neon-filled NX2 using a tapered anode , 2007 .

[13]  S. Khorram,et al.  Adaptation of Sing Lee's model to the Filippov type plasma focus geometry , 2005 .

[14]  S. A Sequential Plasma Focus , 2004 .

[15]  M. Rafique,et al.  Correlated deuteron energy spectra and neutron yield for a 3 kJ plasma focus , 2000 .

[16]  A. Serban,et al.  Experiments on speed-enhanced neutron yield from a small plasma focus , 1998, Journal of Plasma Physics.

[17]  Guixin Zhang,et al.  High rep rate high performance plasma focus as a powerful radiation source , 1998 .

[18]  S. V. Springham,et al.  Soft X-ray yield measurement in a small plasma focus operated in neon , 1998 .

[19]  A. V. Dubrovskii,et al.  A Powerful Soft X-ray Source for X-ray Lithography Based on Plasma Focusing , 1998 .

[20]  A. Serban,et al.  Dimensions and lifetime of the plasma focus pinch , 1996 .

[21]  N. V. Filippov,et al.  Megajoule scale plasma focus as efficient X-ray source , 1996 .

[22]  Mahe. Liu,et al.  Soft X-rays from compact plasma focus , 1996 .

[23]  Jalil Ali,et al.  Development and studies of a small plasma focus , 1990 .

[24]  K. H. Kwek,et al.  Nonperturbing plasma-focus measurements in the run-down phase , 1989 .

[25]  Suryadi,et al.  A simple facility for the teaching of plasma dynamics and plasma nuclear fusion , 1988 .

[26]  Sing Lee A current-stepping technique to enhance pinch compression , 1984 .

[27]  Sing Lee Plasma Focus Model Yielding Trajectory and Structure , 1984 .

[28]  D. Potter The formation of high-density z-pinches , 1978 .

[29]  R. Stephenson A and V , 1962, The British journal of ophthalmology.