Projections as visual aids for classification system design

Dimensionality reduction is a compelling alternative for high-dimensional data visualization. This method provides insight into high-dimensional feature spaces by mapping relationships between observations (high-dimensional vectors) to low (two or three) dimensional spaces. These low-dimensional representations support tasks such as outlier and group detection based on direct visualization. Supervised learning, a subfield of machine learning, is also concerned with observations. A key task in supervised learning consists of assigning class labels to observations based on generalization from previous experience. Effective development of such classification systems depends on many choices, including features descriptors, learning algorithms, and hyperparameters. These choices are not trivial, and there is no simple recipe to improve classification systems that perform poorly. In this context, we first propose the use of visual representations based on dimensionality reduction (projections) for predictive feedback on classification efficacy. Second, we propose a projection-based visual analytics methodology, and supportive tooling, that can be used to improve classification systems through feature selection. We evaluate our proposal through experiments involving four datasets and three representative learning algorithms.

[1]  James Ze Wang,et al.  Automatic Linguistic Indexing of Pictures by a Statistical Modeling Approach , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Laurens van der Maaten,et al.  Accelerating t-SNE using tree-based algorithms , 2014, J. Mach. Learn. Res..

[3]  Enrico Bertini,et al.  INFUSE: Interactive Feature Selection for Predictive Modeling of High Dimensional Data , 2014, IEEE Transactions on Visualization and Computer Graphics.

[4]  Rosane Minghim,et al.  An Approach to Supporting Incremental Visual Data Classification , 2015, IEEE Transactions on Visualization and Computer Graphics.

[5]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[6]  Danilo Medeiros Eler,et al.  Visual Data Exploration to Feature Space Definition , 2010, 2010 23rd SIBGRAPI Conference on Graphics, Patterns and Images.

[7]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[8]  Aixia Guo,et al.  Gene Selection for Cancer Classification using Support Vector Machines , 2014 .

[9]  Tamara Munzner,et al.  Empirical Guidance on Scatterplot and Dimension Reduction Technique Choices , 2013, IEEE Transactions on Visualization and Computer Graphics.

[10]  Thomas Ertl,et al.  Visual Classifier Training for Text Document Retrieval , 2012, IEEE Transactions on Visualization and Computer Graphics.

[11]  Daniel Weiskopf,et al.  State of the Art of Parallel Coordinates , 2013, Eurographics.

[12]  Daniel A. Keim,et al.  Subspace search and visualization to make sense of alternative clusterings in high-dimensional data , 2012, 2012 IEEE Conference on Visual Analytics Science and Technology (VAST).

[13]  Paul Nghiem,et al.  Interactive Atlas of Dermoscopy , 2004 .

[14]  Michel Verleysen,et al.  Nonlinear dimensionality reduction of data manifolds with essential loops , 2005, Neurocomputing.

[15]  Patrick J. F. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 2003 .

[16]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[17]  Haim Levkowitz,et al.  Least Square Projection: A Fast High-Precision Multidimensional Projection Technique and Its Application to Document Mapping , 2008, IEEE Transactions on Visualization and Computer Graphics.

[18]  Georges G. Grinstein,et al.  DNA visual and analytic data mining , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[19]  João Paulo Papa,et al.  Automatic Segmentation and Classification of Human Intestinal Parasites From Microscopy Images , 2013, IEEE Transactions on Biomedical Engineering.

[20]  Pedro M. Domingos A few useful things to know about machine learning , 2012, Commun. ACM.

[21]  Steve R. Gunn,et al.  Result Analysis of the NIPS 2003 Feature Selection Challenge , 2004, NIPS.

[22]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[23]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[24]  Eser Kandogan Star Coordinates: A Multi-dimensional Visualization Technique with Uniform Treatment of Dimensions , 2000 .

[25]  Desney S. Tan,et al.  EnsembleMatrix: interactive visualization to support machine learning with multiple classifiers , 2009, CHI.

[26]  Luis Gustavo Nonato,et al.  Local Affine Multidimensional Projection , 2011, IEEE Transactions on Visualization and Computer Graphics.

[27]  Hermann Ney,et al.  Features for image retrieval: an experimental comparison , 2008, Information Retrieval.

[28]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[29]  San Cristóbal Mateo,et al.  The Lack of A Priori Distinctions Between Learning Algorithms , 1996 .

[30]  Barbara Hammer,et al.  Using Discriminative Dimensionality Reduction to Visualize Classifiers , 2014, Neural Processing Letters.

[31]  Tamara Munzner,et al.  Visualizing dimensionally-reduced data: interviews with analysts and a characterization of task sequences , 2014, BELIV.

[32]  Valerio Pascucci,et al.  Distortion‐Guided Structure‐Driven Interactive Exploration of High‐Dimensional Data , 2014, Comput. Graph. Forum.

[33]  Gunther Heidemann,et al.  Inter-active learning of ad-hoc classifiers for video visual analytics , 2012, 2012 IEEE Conference on Visual Analytics Science and Technology (VAST).

[34]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[35]  Ramana Rao,et al.  The table lens: merging graphical and symbolic representations in an interactive focus + context visualization for tabular information , 1994, CHI '94.

[36]  Emmanuelle Gouillart,et al.  scikit-image: image processing in Python , 2014, PeerJ.

[37]  Jarke J. van Wijk,et al.  BaobabView: Interactive construction and analysis of decision trees , 2011, 2011 IEEE Conference on Visual Analytics Science and Technology (VAST).

[38]  Richard A. Becker,et al.  The Visual Design and Control of Trellis Display , 1996 .

[39]  Huan Liu,et al.  Toward integrating feature selection algorithms for classification and clustering , 2005, IEEE Transactions on Knowledge and Data Engineering.

[40]  Alexandru Telea,et al.  Interactive Image Feature Selection Aided by Dimensionality Reduction , 2015, EuroVA@EuroVis.

[41]  Andreas Buja,et al.  Stress functions for nonlinear dimension reduction, proximity analysis, and graph drawing , 2013, J. Mach. Learn. Res..

[42]  John M. Chambers,et al.  Graphical Methods for Data Analysis , 1983 .

[43]  Tso-Jung Yen,et al.  Discussion on "Stability Selection" by Meinshausen and Buhlmann , 2010 .

[44]  Xiaoru Yuan,et al.  Dimension Projection Matrix/Tree: Interactive Subspace Visual Exploration and Analysis of High Dimensional Data , 2013, IEEE Transactions on Visualization and Computer Graphics.

[45]  Rosane Minghim,et al.  Visual analysis of dimensionality reduction quality for parameterized projections , 2014, Comput. Graph..

[46]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[47]  Samuel Kaski,et al.  Probabilistic retrieval and visualization of biologically relevant microarray experiments , 2009, BMC Bioinformatics.

[48]  Peter Filzmoser,et al.  Brushing Dimensions - A Dual Visual Analysis Model for High-Dimensional Data , 2011, IEEE Transactions on Visualization and Computer Graphics.

[49]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[50]  Fernando Vieira Paulovich,et al.  LoCH: A neighborhood-based multidimensional projection technique for high-dimensional sparse spaces , 2015, Neurocomputing.

[51]  Yoshua Bengio,et al.  Practical Recommendations for Gradient-Based Training of Deep Architectures , 2012, Neural Networks: Tricks of the Trade.

[52]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[53]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[54]  Pierre Geurts,et al.  Extremely randomized trees , 2006, Machine Learning.

[55]  Rosane Minghim,et al.  Explaining Neighborhood Preservation for Multidimensional Projections , 2015, CGVC.

[56]  Paulo E. Rauber,et al.  Visualizing the Hidden Activity of Artificial Neural Networks , 2017, IEEE Transactions on Visualization and Computer Graphics.

[57]  N. Meinshausen,et al.  Stability selection , 2008, 0809.2932.

[58]  Marc Streit,et al.  Opening the Black Box: Strategies for Increased User Involvement in Existing Algorithm Implementations , 2014, IEEE Transactions on Visualization and Computer Graphics.

[59]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[60]  Valerio Pascucci,et al.  Visualizing High-Dimensional Data: Advances in the Past Decade , 2017, IEEE Transactions on Visualization and Computer Graphics.

[61]  Yoshua. Bengio,et al.  Learning Deep Architectures for AI , 2007, Found. Trends Mach. Learn..

[62]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[63]  Michaël Aupetit,et al.  Visualizing distortions and recovering topology in continuous projection techniques , 2007, Neurocomputing.