Bifurcations and Pattern Formation in a Predator-Prey Model

In this paper, we investigate the spatiotemporal dynamics of a Leslie–Gower predator–prey model incorporating a prey refuge subject to the Neumann boundary conditions. We mainly consider Hopf bifur...

[1]  Rodrigo Ramos-Jiliberto,et al.  Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability , 2003 .

[2]  Yongli Song,et al.  Steady-State, Hopf and steady-State-Hopf bifurcations in Delay differential equations with Applications to a damped harmonic oscillator with Delay Feedback , 2012, Int. J. Bifurc. Chaos.

[3]  Feng Rao Spatiotemporal complexity of a three-species ratio-dependent food chain model , 2014 .

[4]  Yongli Cai,et al.  Dynamics of a Leslie–Gower predator–prey model with additive Allee effect , 2015 .

[5]  Yuan Yuan,et al.  Spatiotemporal Dynamics of the Diffusive Mussel-Algae Model Near Turing-Hopf Bifurcation , 2017, SIAM J. Appl. Dyn. Syst..

[6]  Andrei Korobeinikov,et al.  A Lyapunov function for Leslie-Gower predator-prey models , 2001, Appl. Math. Lett..

[7]  Mingxin Wang,et al.  Dynamics and patterns of a diffusive Leslie–Gower prey–predator model with strong Allee effect in prey , 2016 .

[8]  Junjie Wei,et al.  Bifurcation analysis of the Gierer–Meinhardt system with a saturation in the activator production , 2014 .

[9]  Rui Peng,et al.  Spatiotemporal patterns in a reaction–diffusion model with the Degn–Harrison reaction scheme☆ , 2013 .

[10]  Shangjiang Guo,et al.  Bifurcation and spatio-temporal patterns in a diffusive predator–prey system , 2018, Nonlinear Analysis: Real World Applications.

[11]  Pablo Aguirre,et al.  A general class of predation models with multiplicative Allee effect , 2014 .

[12]  Weiming Wang,et al.  Positive steady states in an epidemic model with nonlinear incidence rate , 2017, Comput. Math. Appl..

[13]  Zhen Jin,et al.  Influence of isolation degree of spatial patterns on persistence of populations , 2016 .

[14]  Yongli Cai,et al.  Fish-hook bifurcation branch in a spatial heterogeneous epidemic model with cross-diffusion , 2016 .

[15]  Junjie Wei,et al.  Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge. , 2013, Mathematical biosciences and engineering : MBE.

[16]  Yongli Cai,et al.  Spatiotemporal dynamics of a Leslie–Gower predator–prey model incorporating a prey refuge , 2011 .

[17]  Fengde Chen,et al.  On a Leslie―Gower predator―prey model incorporating a prey refuge , 2009 .

[18]  Gui-Quan Sun,et al.  Pattern dynamics of a Gierer–Meinhardt model with spatial effects , 2017 .

[19]  Yuan Lou,et al.  Qualitative behaviour of positive solutions of a predator—prey model: effects of saturation , 2001, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[20]  Yongli Cai,et al.  Spatiotemporal Dynamics in a Reaction-Diffusion Epidemic Model with a Time-Delay in Transmission , 2015, Int. J. Bifurc. Chaos.

[21]  P. H. Leslie SOME FURTHER NOTES ON THE USE OF MATRICES IN POPULATION MATHEMATICS , 1948 .

[22]  J. Gower,et al.  The properties of a stochastic model for the predator-prey type of interaction between two species , 1960 .

[23]  Xianzhong Zeng,et al.  Non-constant positive steady states of a prey–predator system with cross-diffusions☆ , 2007 .

[24]  Junjie Wei,et al.  Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system ✩ , 2009 .

[25]  Ping Bi,et al.  Periodicity in a ratio-dependent predator–prey system with stage-structured predator on time scales , 2008 .

[26]  Wonlyul Ko,et al.  Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge , 2006 .

[27]  Yongli Cai,et al.  Turing patterns in a reaction–diffusion epidemic model , 2017 .

[28]  Yun Kang,et al.  Complex Dynamics of a host–parasite model with both horizontal and vertical transmissions in a spatial heterogeneous environment , 2018 .

[29]  Eduardo Sáez,et al.  Two limit cycles in a Leslie-Gower predator-prey model with additive Allee effect , 2009 .

[30]  A. Turing The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[31]  Rui Wang,et al.  Bifurcation Analysis of a Generic Reaction-Diffusion Turing Model , 2014, Int. J. Bifurc. Chaos.

[32]  Sanling Yuan,et al.  Retraction notice to “Bifurcation analysis in the delayed Leslie–Gower predator–prey system” [Appl. Math. Model. 33 (11) (2009) 4049–4061] , 2013 .

[33]  M. A. Aziz-Alaoui,et al.  Analysis of a predator–prey model with modified Leslie–Gower and Holling-type II schemes with time delay , 2006 .

[34]  Yaying Dong,et al.  Turing patterns in a reaction-diffusion model with the Degn-Harrison reaction scheme , 2015 .