Global solutions for the gravity water waves equation in dimension 3

We show existence of global solutions for the gravity water waves equation in dimension 3, in the case of small data. The proof combines energy estimates, which yield control of L 2 related norms, with dispersive estimates, which give decay in L 8 . To obtain these dispersive estimates, we use an analysis in Fourier space; the study of space and time resonances is then the crucial point.

[1]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .

[2]  Guido Schneider,et al.  The Rigorous Approximation of Long-Wavelength Capillary-Gravity Waves , 2002 .

[3]  Sijue Wu,et al.  Almost global wellposedness of the 2-D full water wave problem , 2009, 0910.2473.

[4]  Jalal Shatah,et al.  Normal forms and quadratic nonlinear Klein‐Gordon equations , 1985 .

[5]  J. Shatah,et al.  Local Well-Posedness for Fluid Interface Problems , 2011 .

[6]  David Lannes,et al.  Well-posedness of the water-waves equations , 2005 .

[7]  C. Sulem,et al.  The nonlinear Schrödinger equation : self-focusing and wave collapse , 2004 .

[8]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[9]  Sergiu Klainerman,et al.  Uniform decay estimates and the lorentz invariance of the classical wave equation , 1985 .

[10]  Demetrios Christodoulou,et al.  Global solutions of nonlinear hyperbolic equations for small initial data , 1986 .

[11]  Nader Masmoudi,et al.  Well-posedness of 3D vortex sheets with surface tension , 2007 .

[12]  Helsedepartementet I-12/2002 , 2006 .

[13]  Sijue Wu,et al.  Well-posedness in Sobolev spaces of the full water wave problem in 2-D , 1997 .

[14]  Sijue Wu,et al.  Well-posedness in Sobolev spaces of the full water wave problem in 3-D , 1999 .

[15]  Nader Masmoudi,et al.  Global Solutions for 3D Quadratic Schrödinger Equations , 2008, 1001.5158.

[16]  Jalal Shatah,et al.  Geometry and a priori estimates for free boundary problems of the Euler's equation , 2006 .

[17]  Daniel Coutand,et al.  Well-posedness of the free-surface incompressible Euler equations with or without surface tension , 2005 .

[18]  Ping Zhang,et al.  On the free boundary problem of three‐dimensional incompressible Euler equations , 2008 .

[19]  Thomas Y. Hou,et al.  Growth rates for the linearized motion of fluid interfaces away from equilibrium , 1993 .

[20]  Walter Craig,et al.  An existence theory for water waves and the boussinesq and korteweg-devries scaling limits , 1985 .

[21]  Sijue Wu,et al.  Global wellposedness of the 3-D full water wave problem , 2011 .

[22]  D. Christodoulou,et al.  S E M I N A I R E E quations aux , 2008 .

[23]  Hideaki Yosihara,et al.  Gravity Waves on the Free Surface of an Incompressible Perfect Fluid of Finite Depth , 1982 .

[24]  Nader Masmoudi,et al.  The zero surface tension limit of three-dimensional water waves , 2009 .

[25]  Paraproducts with flag singularities I. A case study , 2006, math/0601474.

[26]  Masao Ogawa,et al.  FREE BOUNDARY PROBLEM FOR AN INCOMPRESSIBLE IDEAL FLUID WITH SURFACE TENSION , 2002 .

[27]  Walter Craig,et al.  Traveling Two and Three Dimensional Capillary Gravity Water Waves , 2000, SIAM J. Math. Anal..