Rounding arrangements dynamically
暂无分享,去创建一个
[1] Leonidas J. Guibas,et al. Epsilon geometry: building robust algorithms from imprecise computations , 1989, SCG '89.
[2] Victor J. Milenkovic,et al. Numerical stability of algorithms for line arrangements , 1991, SCG '91.
[3] Ketan Mulmuley,et al. Computational geometry : an introduction through randomized algorithms , 1993 .
[4] F. Frances Yao,et al. Finite-resolution computational geometry , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).
[5] Kenneth L. Clarkson,et al. Applications of random sampling in computational geometry, II , 1988, SCG '88.
[6] Franklin P. Antonio. Faster Line Segment Intersection , 1992, Graphics Gems III.
[7] Steven Fortune,et al. Stable maintenance of point set triangulations in two dimensions , 1989, 30th Annual Symposium on Foundations of Computer Science.
[8] Ketan Mulmuley. A Fast Planar Partition Algorithm, I , 1990, J. Symb. Comput..
[9] MatoušekJiří. Geometric range searching , 1994 .
[10] John E. Hopcroft,et al. Towards implementing robust geometric computations , 1988, SCG '88.
[11] Thomas Ottmann,et al. Algorithms for Reporting and Counting Geometric Intersections , 1979, IEEE Transactions on Computers.
[12] Victor J. Milenkovic,et al. Verifiable Implementations of Geometric Algorithms Using Finite Precision Arithmetic , 1989, Artif. Intell..