Nondestructive full-field imaging XANES-PEEM analysis of cosmic grains

For chemical analysis of submicron particles, mass spectrometric methods have the disadvantage of being destructive. Thus, a nondestructive elemental and chemical mapping with a high spatial resolution prior to mass analysis is extremely valuable to precharacterize the sample. Here, first results are presented of combined XANES (x-ray absorption near-edge structure) and PEEM (photoemission electron microscopy) measurements on a cosmic grain fraction from the Murchison meteorite. This nondestructive full-field imaging method is well suited for a quantitative analysis and for a preselection prior to detailed mass spectrometric investigations with isotopic resolution/selectivity. A spectral unmixing algorithm helped to distinguish between elements in different binding surroundings and therefore to obtain lateral information about the elemental composition and the chemical structure. Individual ${\mathrm{Al}}_{2}{\mathrm{O}}_{3}$ and $\mathrm{Si}{\mathrm{O}}_{2}$ grains as well as Cr-rich grains could be identified among the majority of SiC grains. This method is suited not only for meteoritic material but can in general be applied to composite grain materials of submicron sizes.

[1]  G. Schönhense,et al.  Trace element analysis in pre-solar stardust grains via full-field imaging XPS (Nano-ESCA) , 2006 .

[2]  L. Dubrovinsky,et al.  Aggregated diamond nanorods, the densest and least compressible form of carbon , 2005 .

[3]  S. Messenger,et al.  Supernova Olivine from Cometary Dust , 2005, Science.

[4]  G. Schönhense,et al.  NanoESCA: imaging UPS and XPS with high energy resolution , 2005 .

[5]  N. Weber,et al.  Nanoelectron spectroscopy for chemical analysis: a novel energy filter for imaging x-ray photoemission spectroscopy , 2005 .

[6]  C. A. Sholl Diffusivity for diffusion between e and g interstitial sites in the C15 AB2 structure , 2005 .

[7]  P. Hoppe,et al.  Discovery of Abundant In Situ Silicate and Spinel Grains from Red Giant Stars in a Primtive Meteorite , 2004 .

[8]  Ann N Nguyen,et al.  Discovery of Ancient Silicate Stardust in a Meteorite , 2004, Science.

[9]  P. Hoppe,et al.  NanoSIMS, the new tool of choice: 26Al, 44Ti, 49V, 53Mn, 60Fe, and more , 2004 .

[10]  E Neher,et al.  Optimizing imaging parameters for the separation of multiple labels in a fluorescence image , 2004, Journal of microscopy.

[11]  B. Gilbert,et al.  X-ray absorption spectroscopy of silicates for in situ, sub-micrometer mineral identification , 2003 .

[12]  Gerhard Jakob,et al.  Element-specific magnetic moments from core-absorption magnetic circular dichroism of the doped Heusler alloy Co2Cr0.6Fe0.4Al , 2003 .

[13]  G. Schönhense,et al.  Investigating surface magnetism by means of photoexcitation electron emission microscopy , 2002 .

[14]  S. Nepijko,et al.  Size of three‐dimensional objects measured by means of photoemission electron microscopy , 2001, Annalen der Physik.

[15]  R. Follath,et al.  Performance of the first undulator beamline U49-1-SGM at BESSY II , 2001 .

[16]  S. Nepijko,et al.  Imaging of three‐dimensional objects in emission electron microscopy , 2001, Journal of microscopy.

[17]  K. Prince,et al.  Core-level photoelectron spectroscopy from individual heteroepitaxial nanocrystals on GaAs(001) , 2001 .

[18]  W. Ching,et al.  Ab initio calculation of the core-hole effect in the electron energy-loss near-edge structure , 2000 .

[19]  G. Schönhense,et al.  Orbital mapping of carbon thin films by XANES-spectromicroscopy , 2000 .

[20]  P. Hoppe,et al.  Presolar dust grains from meteorites and their stellar sources , 2000 .

[21]  F. Jollet,et al.  Electronic structure analysis of via x-ray absorption near-edge structure at the Si K, and O K edges , 1998 .

[22]  E. Zinner Trends in the study of presolar dust grains from primitive meteorites , 1998 .

[23]  E. Zinner STELLAR NUCLEOSYNTHESIS AND THE ISOTOPIC COMPOSITION OF PRESOLAR GRAINS FROM PRIMITIVE METEORITES , 1998 .

[24]  R. Clayton,et al.  s-Process Zirconium in Presolar Silicon Carbide Grains , 1997 .

[25]  F. Jollet,et al.  CHARACTERIZATION OF IRON OXIDES BY X-RAY ABSORPTION AT THE OXYGEN K EDGE USING A FULL MULTIPLE-SCATTERING APPROACH , 1997 .

[26]  Brauer,et al.  Evaluation of some basic positron-related characteristics of SiC. , 1996, Physical review. B, Condensed matter.

[27]  P. Hoppe,et al.  Trace‐element concentrations in single circumstellar silicon carbide grains from the Murchison meteorite , 1995 .

[28]  Gordon E. Brown,et al.  New opportunities in XAFS investigation in the 1–2 keV region , 1994 .

[29]  E. Anders,et al.  Interstellar grains in meteorites: II. SiC and its noble gases , 1994 .

[30]  E. Anders,et al.  Interstellar grains in meteorites: I. Isolation of SiC, graphite and diamond; size distributions of SiC and graphite , 1994 .

[31]  U. Ott Interstellar grains in meteorites , 1993, Nature.

[32]  F. Begemann,et al.  Discovery of s-process barium in the Murchison meteorite , 1990 .

[33]  G. Harp,et al.  Photoelectron microscopy with synchrotron radiation , 1988 .

[34]  U. Ott,et al.  Noble-gas-rich separates from the Allende meteorite , 1981 .