Nondestructive full-field imaging XANES-PEEM analysis of cosmic grains
暂无分享,去创建一个
G. Schönhense | H. Spiecker | S. Merchel | U. Ott | P. Bernhard | J. Maul | T. Berg | Ch. Sudek | Frederik Wegelin
[1] G. Schönhense,et al. Trace element analysis in pre-solar stardust grains via full-field imaging XPS (Nano-ESCA) , 2006 .
[2] L. Dubrovinsky,et al. Aggregated diamond nanorods, the densest and least compressible form of carbon , 2005 .
[3] S. Messenger,et al. Supernova Olivine from Cometary Dust , 2005, Science.
[4] G. Schönhense,et al. NanoESCA: imaging UPS and XPS with high energy resolution , 2005 .
[5] N. Weber,et al. Nanoelectron spectroscopy for chemical analysis: a novel energy filter for imaging x-ray photoemission spectroscopy , 2005 .
[6] C. A. Sholl. Diffusivity for diffusion between e and g interstitial sites in the C15 AB2 structure , 2005 .
[7] P. Hoppe,et al. Discovery of Abundant In Situ Silicate and Spinel Grains from Red Giant Stars in a Primtive Meteorite , 2004 .
[8] Ann N Nguyen,et al. Discovery of Ancient Silicate Stardust in a Meteorite , 2004, Science.
[9] P. Hoppe,et al. NanoSIMS, the new tool of choice: 26Al, 44Ti, 49V, 53Mn, 60Fe, and more , 2004 .
[10] E Neher,et al. Optimizing imaging parameters for the separation of multiple labels in a fluorescence image , 2004, Journal of microscopy.
[11] B. Gilbert,et al. X-ray absorption spectroscopy of silicates for in situ, sub-micrometer mineral identification , 2003 .
[12] Gerhard Jakob,et al. Element-specific magnetic moments from core-absorption magnetic circular dichroism of the doped Heusler alloy Co2Cr0.6Fe0.4Al , 2003 .
[13] G. Schönhense,et al. Investigating surface magnetism by means of photoexcitation electron emission microscopy , 2002 .
[14] S. Nepijko,et al. Size of three‐dimensional objects measured by means of photoemission electron microscopy , 2001, Annalen der Physik.
[15] R. Follath,et al. Performance of the first undulator beamline U49-1-SGM at BESSY II , 2001 .
[16] S. Nepijko,et al. Imaging of three‐dimensional objects in emission electron microscopy , 2001, Journal of microscopy.
[17] K. Prince,et al. Core-level photoelectron spectroscopy from individual heteroepitaxial nanocrystals on GaAs(001) , 2001 .
[18] W. Ching,et al. Ab initio calculation of the core-hole effect in the electron energy-loss near-edge structure , 2000 .
[19] G. Schönhense,et al. Orbital mapping of carbon thin films by XANES-spectromicroscopy , 2000 .
[20] P. Hoppe,et al. Presolar dust grains from meteorites and their stellar sources , 2000 .
[21] F. Jollet,et al. Electronic structure analysis of via x-ray absorption near-edge structure at the Si K, and O K edges , 1998 .
[22] E. Zinner. Trends in the study of presolar dust grains from primitive meteorites , 1998 .
[23] E. Zinner. STELLAR NUCLEOSYNTHESIS AND THE ISOTOPIC COMPOSITION OF PRESOLAR GRAINS FROM PRIMITIVE METEORITES , 1998 .
[24] R. Clayton,et al. s-Process Zirconium in Presolar Silicon Carbide Grains , 1997 .
[25] F. Jollet,et al. CHARACTERIZATION OF IRON OXIDES BY X-RAY ABSORPTION AT THE OXYGEN K EDGE USING A FULL MULTIPLE-SCATTERING APPROACH , 1997 .
[26] Brauer,et al. Evaluation of some basic positron-related characteristics of SiC. , 1996, Physical review. B, Condensed matter.
[27] P. Hoppe,et al. Trace‐element concentrations in single circumstellar silicon carbide grains from the Murchison meteorite , 1995 .
[28] Gordon E. Brown,et al. New opportunities in XAFS investigation in the 1–2 keV region , 1994 .
[29] E. Anders,et al. Interstellar grains in meteorites: II. SiC and its noble gases , 1994 .
[30] E. Anders,et al. Interstellar grains in meteorites: I. Isolation of SiC, graphite and diamond; size distributions of SiC and graphite , 1994 .
[31] U. Ott. Interstellar grains in meteorites , 1993, Nature.
[32] F. Begemann,et al. Discovery of s-process barium in the Murchison meteorite , 1990 .
[33] G. Harp,et al. Photoelectron microscopy with synchrotron radiation , 1988 .
[34] U. Ott,et al. Noble-gas-rich separates from the Allende meteorite , 1981 .