Bandwidth Enhancement With Low Group-Delay Variation for a 40-Gb/s Transimpedance Amplifier

A 40-Gb/s transimpedance amplifier (TIA) is proposed using multistage inductive-series peaking for low group-delay variation. A transimpedance limit for multistage TIAs is derived, and a bandwidth-enhancement technique using inductive-series π -networks is analyzed. A design method for low group delay constrained to 3-dB bandwidth enhancement is suggested. The TIA is implemented in a 0.13-μm CMOS process and achieves a 3-dB bandwidth of 29 GHz. The transimpedance gain is 50 dB·Ω , and the transimpedance group-delay variation is less than 16 ps over the 3-dB bandwidth. The chip occupies an area of 0.4 mm2, including the pads, and consumes 45.7 mW from a 1.5-V supply. The measured TIA demonstrates a transimpedance figure of merit of 200.7 Ω/pJ.

[1]  A. Leven,et al.  An InGaAs-InP HBT differential transimpedance amplifier with 47-GHz bandwidth , 2003, IEEE Journal of Solid-State Circuits.

[2]  Ren-Chieh Liu,et al.  DC-to-15- and DC-to-30-GHz CMOS distributed transimpedance amplifiers , 2004, 2004 IEE Radio Frequency Integrated Circuits (RFIC) Systems. Digest of Papers.

[3]  Kiat Seng Yeo,et al.  Broad-Band Design Techniques for Transimpedance Amplifiers , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[4]  Jeffrey S. Walling,et al.  Wideband CMOS Amplifier Design: Time-Domain Considerations , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[5]  Jun-De Jin,et al.  A 40-Gb/s Transimpedance Amplifier in 0.18-$\mu$m CMOS Technology , 2008, IEEE Journal of Solid-State Circuits.

[6]  E. Sackinger,et al.  Broadband Circuits for Optical Fiber Communication , 2005 .

[7]  Behzad Razavi,et al.  40-Gb/s amplifier and ESD protection circuit in 0.18-/spl mu/m CMOS technology , 2004, IEEE Journal of Solid-State Circuits.

[8]  L. Schares,et al.  160-Gb/s, 16-Channel Full-Duplex, Single-Chip CMOS Optical Transceiver , 2007, OFC/NFOEC 2007 - 2007 Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference.

[9]  Alex G. Dickinson CMOS Photonics - Bringing Moore's Law to Optical Interconnect , 2007, 15th Annual IEEE Symposium on High-Performance Interconnects (HOTI 2007).

[10]  Neil Savage,et al.  Linking with light [high-speed optical interconnects] , 2002 .

[11]  F. Ellinger,et al.  A low-power 20-GHz 52-dB/spl Omega/ transimpedance amplifier in 80-nm CMOS , 2004, IEEE Journal of Solid-State Circuits.

[12]  A. Leven,et al.  SiGe differential transimpedance amplifier with 50 GHz bandwidth , 2002, 24th Annual Technical Digest Gallium Arsenide Integrated Circuit (GaAs IC) Symposiu.

[13]  D. Kucharski,et al.  A Fully Integrated 20-Gb/s Optoelectronic Transceiver Implemented in a Standard 0.13- $\mu{\hbox {m}}$ CMOS SOI Technology , 2006, IEEE Journal of Solid-State Circuits.

[14]  Peter Starič,et al.  Wideband Amplifiers , 2006 .

[15]  Mourad N. El-Gamal,et al.  Design Techniques of CMOS Ultra-Wide-Band Amplifiers for Multistandard Communications , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[16]  N. Savage,et al.  Linking with Light , 2002 .

[17]  Dan Song,et al.  A Fully Integrated 4 $\times$ 10-Gb/s DWDM Optoelectronic Transceiver Implemented in a Standard 0.13 $\mu{\hbox {m}}$ CMOS SOI Technology , 2006, IEEE Journal of Solid-State Circuits.

[18]  Stephen P. Boyd,et al.  Bandwidth extension in CMOS with optimized on-chip inductors , 2000, IEEE Journal of Solid-State Circuits.

[19]  K. W. Kobayashi State-of-the-art 60 GHz, 3.6 k-ohm transimpedance amplifier for 40 Gb/s and beyond , 2003, IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2003.

[20]  Shen-Iuan Liu,et al.  CMOS wideband amplifiers using multiple inductive-series peaking technique , 2005, IEEE Journal of Solid-State Circuits.

[21]  Thomas H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES , 2003 .

[22]  A. Hajimiri,et al.  Bandwidth enhancement for transimpedance amplifiers , 2004, IEEE Journal of Solid-State Circuits.

[23]  Eduard Säckinger Broadband Circuits for Optical Fiber Communication: Säckinger/Broadband , 2005 .