Mixing Atomistic and Coarse Grain Solvation Models for MD Simulations: Let WT4 Handle the Bulk.

Accurate simulation of biomolecular systems requires the consideration of solvation effects. The arrangement and dynamics of water close to a solute are strongly influenced by the solute itself. However, as the solute-solvent distance increases, the water properties tend to those of the bulk liquid. This suggests that bulk regions can be treated at a coarse grained (CG) level, while keeping the atomistic details around the solute. Since water represents about 80% of any biological system, this approach may offer a significant reduction in the computational cost of simulations without compromising atomistic details. We show here that mixing the popular SPC water model with a CG model for solvation (called WatFour) can effectively mimic the hydration, structure, and dynamics of molecular systems composed of pure water, simple electrolyte solutions, and solvated macromolecules. As a nontrivial example, we present simulations of the SNARE membrane fusion complex, a trimeric protein-protein complex embedded in a double phospholipid bilayer. Comparison with a fully atomistic reference simulation illustrates the equivalence between both approaches.

[1]  Wilfred F. van Gunsteren,et al.  Development of a simple, self-consistent polarizable model for liquid water , 2003 .

[2]  Andreas Heyden Conservative Algorithm for an Adaptive Change of Resolution in Mixed Atomistic / Coarse-Grained Multiscale Simulations , 2010 .

[3]  S. Pantano,et al.  Structure and dynamics of nano-sized raft-like domains on the plasma membrane. , 2012, The Journal of chemical physics.

[4]  A. R. H. Goodwin,et al.  A Database for the Static Dielectric Constant of Water and Steam , 1995 .

[5]  R. Ludwig NMR relaxation studies in water-alcohol mixtures: the water-rich region , 1995 .

[6]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[7]  Martin Hof,et al.  Structure, dynamics, and hydration of POPC/POPS bilayers suspended in NaCl, KCl, and CsCl solutions. , 2012, Biochimica et biophysica acta.

[8]  Munir S Skaf,et al.  Anomalous dynamics of hydration water in carbohydrate solutions. , 2009, The journal of physical chemistry. B.

[9]  Julien Michel,et al.  Prediction of partition coefficients by multiscale hybrid atomic-level/coarse-grain simulations. , 2008, The journal of physical chemistry. B.

[10]  Bin Chen,et al.  Liquid Water from First Principles: Investigation of Different Sampling Approaches , 2004 .

[11]  P. Kollman,et al.  Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models , 1992 .

[12]  H. Berendsen,et al.  Interaction Models for Water in Relation to Protein Hydration , 1981 .

[13]  M. Hoshino,et al.  Role of the recoil effect in two-center interference in X-ray photoionization , 2006 .

[14]  Pablo D. Dans,et al.  Another Coarse Grain Model for Aqueous Solvation: WAT FOUR? , 2010 .

[15]  Klaus Schulten,et al.  Four-scale description of membrane sculpting by BAR domains. , 2008, Biophysical journal.

[16]  Bernd Ensing,et al.  Recent progress in adaptive multiscale molecular dynamics simulations of soft matter. , 2010, Physical chemistry chemical physics : PCCP.

[17]  Michele Parrinello,et al.  Energy Conservation in Adaptive Hybrid Atomistic/Coarse-Grain Molecular Dynamics. , 2007, Journal of chemical theory and computation.

[18]  Wataru Shinoda,et al.  Large-Scale Molecular Dynamics Simulations of Self-Assembling Systems , 2008, Science.

[19]  Paul E. Smith,et al.  Simulated surface tensions of common water models. , 2007, The Journal of chemical physics.

[20]  Siewert J Marrink,et al.  Hybrid simulations: combining atomistic and coarse-grained force fields using virtual sites. , 2011, Physical chemistry chemical physics : PCCP.

[21]  M. Neumann Computer simulation and the dielectric constant at finite wavelength , 1986 .

[22]  Toshiko Ichiye,et al.  Soft Sticky Dipole Potential for Liquid Water: A New Model , 1996 .

[23]  K. Kremer,et al.  Adaptive resolution molecular-dynamics simulation: changing the degrees of freedom on the fly. , 2005, The Journal of chemical physics.

[24]  James T. Hynes,et al.  A Molecular Jump Mechanism of Water Reorientation , 2006, Science.

[25]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[26]  Michael L. Klein,et al.  Coarse grain models and the computer simulation of soft materials , 2004 .

[27]  Kurt Kremer,et al.  Comparative atomistic and coarse-grained study of water: What do we lose by coarse-graining? , 2009, The European physical journal. E, Soft matter.

[28]  Gregory A Voth,et al.  Multiscale modeling of biomolecular systems: in serial and in parallel. , 2007, Current opinion in structural biology.

[29]  T. Südhof,et al.  Three-Dimensional Structure of the Complexin/SNARE Complex , 2002, Neuron.

[30]  Gregory A Voth,et al.  A multiscale coarse-graining method for biomolecular systems. , 2005, The journal of physical chemistry. B.

[31]  P. Rossky,et al.  How protein surfaces induce anomalous dynamics of hydration water. , 2007, The journal of physical chemistry. B.

[32]  Lanyuan Lu,et al.  Multiscale Coarse-Graining of the Protein Energy Landscape , 2010, PLoS Comput. Biol..

[33]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997, J. Comput. Chem..

[34]  D. Tieleman,et al.  Molecular dynamics simulation of a palmitoyl-oleoyl phosphatidylserine bilayer with Na+ counterions and NaCl. , 2004, Biophysical journal.

[35]  Qiang Shi,et al.  Mixed atomistic and coarse-grained molecular dynamics: simulation of a membrane-bound ion channel. , 2006, The journal of physical chemistry. B.

[36]  Habibah A. Wahab,et al.  Molecular Insights into 14-Membered Macrolides Using the MM-PBSA Method , 2009, J. Chem. Inf. Model..

[37]  J. Mccammon,et al.  Effect of artificial periodicity in simulations of biomolecules under Ewald boundary conditions: a continuum electrostatics study. , 1999, Biophysical chemistry.

[38]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[39]  M. Sansom,et al.  Coarse-grained simulation: a high-throughput computational approach to membrane proteins. , 2008, Biochemical Society transactions.

[40]  Berk Hess,et al.  GROMACS—the road ahead , 2011 .

[41]  Marc Baaden,et al.  Coarse-grain simulations of the R-SNARE fusion protein in its membrane environment detect long-lived conformational sub-states. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[42]  Peter Bond,et al.  Atomistic Modeling of the Membrane-Embedded Synaptic Fusion Complex: a Grand Challenge Project on the DEISA HPC Infrastructure , 2007, PARCO.

[43]  B. Roux,et al.  Simulation of Osmotic Pressure in Concentrated Aqueous Salt Solutions , 2010 .

[44]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[45]  P. Steiner,et al.  Interactions between synaptic vesicle fusion proteins explored by atomic force microscopy , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Jonathan W. Essex,et al.  The ELBA Force Field for Coarse-Grain Modeling of Lipid Membranes , 2011, PloS one.

[47]  Matej Praprotnik,et al.  Modeling diffusive dynamics in adaptive resolution simulation of liquid water. , 2007, The Journal of chemical physics.

[48]  Paul Tempst,et al.  SNAP receptors implicated in vesicle targeting and fusion , 1993, Nature.

[49]  Matías R. Machado,et al.  Coarse‐grained models of water , 2012 .

[50]  S. Pantano,et al.  Salt induced asymmetry in membrane simulations by partial restriction of ionic motion. , 2009, The Journal of chemical physics.

[51]  C. Herrero Compressibility of solid helium , 2008, 0807.1339.

[52]  Sergio Pantano,et al.  A Coarse Grained Model for Atomic-Detailed DNA Simulations with Explicit Electrostatics. , 2010, Journal of chemical theory and computation.

[53]  Bert L. de Groot,et al.  Acyl chain order parameter profiles in phospholipid bilayers: computation from molecular dynamics simulations and comparison with 2H NMR experiments , 2007, European Biophysics Journal.

[54]  Helmut Grubmüller,et al.  Effect of sodium chloride on a lipid bilayer. , 2003, Biophysical journal.

[55]  J. Wang,et al.  Tracer-diffusion in Liquids. III. The Self-diffusion of Chloride Ion in Aqueous Sodium Chloride Solutions , 1952 .

[56]  Marc Baaden,et al.  Interactions between neuronal fusion proteins explored by molecular dynamics. , 2008, Biophysical journal.

[57]  Marilisa Neri,et al.  Microseconds dynamics simulations of the outer-membrane protease T. , 2008, Biophysical journal.

[58]  Igor Omelyan,et al.  Interpretation of atomic motion in flexible molecules: accelerating molecular dynamics simulations. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[59]  Helmut Grubmüller,et al.  How SNARE molecules mediate membrane fusion: recent insights from molecular simulations. , 2012, Current opinion in structural biology.

[60]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[61]  Kazimierz Krynicki,et al.  Pressure and temperature dependence of self-diffusion in water , 1978 .

[62]  M. Fayer Dynamics of water interacting with interfaces, molecules, and ions. , 2012, Accounts of chemical research.

[63]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[64]  Bruno Lévy,et al.  GPU‐accelerated atom and dynamic bond visualization using hyperballs: A unified algorithm for balls, sticks, and hyperboloids , 2011, J. Comput. Chem..

[65]  M. Parrinello,et al.  Nonperiodic boundary conditions for solvated systems. , 2005, The Journal of chemical physics.

[66]  S. Pantano,et al.  A hybrid all-atom/coarse grain model for multiscale simulations of DNA. , 2011, Physical chemistry chemical physics : PCCP.

[67]  S. Meloni,et al.  Efficient particle labeling in atomistic simulations. , 2007, The Journal of chemical physics.