A new level‐dependent coarse grid correction scheme for indefinite Helmholtz problems
暂无分享,去创建一个
[1] Cornelis W. Oosterlee,et al. Algebraic Multigrid Solvers for Complex-Valued Matrices , 2008, SIAM J. Sci. Comput..
[2] K. Stüben,et al. Multigrid methods: Fundamental algorithms, model problem analysis and applications , 1982 .
[3] R. P. Fedorenko. The speed of convergence of one iterative process , 1964 .
[4] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[5] Achi Brandt,et al. Multigrid method for nearly singular and slightly indefinite problems , 1986 .
[6] Cornelis Vuik,et al. A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems , 2005, SIAM J. Sci. Comput..
[7] Wim Vanroose,et al. Complete Photo-Induced Breakup of the H2 Molecule as a Probe of Molecular Electron Correlation , 2005, Science.
[8] Y. Saad,et al. Preconditioning Helmholtz linear systems , 2010 .
[9] A. Brandt,et al. WAVE-RAY MULTIGRID METHOD FOR STANDING WAVE EQUATIONS , 1997 .
[10] Valeria Simoncini,et al. Flexible Inner-Outer Krylov Subspace Methods , 2002, SIAM J. Numer. Anal..
[11] Reinhard Nabben,et al. Algebraic Multilevel Krylov Methods , 2009, SIAM J. Sci. Comput..
[12] Dianne P. O'Leary,et al. A Multigrid Method Enhanced by Krylov Subspace Iteration for Discrete Helmholtz Equations , 2001, SIAM J. Sci. Comput..
[13] William L. Briggs,et al. A multigrid tutorial, Second Edition , 2000 .
[14] Martin J. Gander,et al. Why it is Difficult to Solve Helmholtz Problems with Classical Iterative Methods , 2012 .
[15] D. Brandt,et al. Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .
[16] Yousef Saad,et al. A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..
[17] A. Bayliss,et al. An Iterative method for the Helmholtz equation , 1983 .
[18] Cornelis Vuik,et al. Comparison of multigrid and incomplete LU shifted-Laplace preconditioners for the inhomogeneous Helmholtz equation , 2006 .
[19] Henri Calandra,et al. Two-Level preconditioned Krylov subspace methods for the solution of three-dimensional heterogeneous Helmholtz problems in seismics , 2012 .
[20] Cornelis Vuik,et al. A SCALABLE HELMHOLTZ SOLVER COMBINING THE SHIFTED LAPLACE PRECONDITIONER WITH MULTIGRID DEFLATION , 2011 .
[21] J. Gillis,et al. Matrix Iterative Analysis , 1961 .
[22] Scott P. MacLachlan,et al. A fast method for the solution of the Helmholtz equation , 2011, J. Comput. Phys..
[23] J. Combes,et al. A class of analytic perturbations for one-body Schrödinger Hamiltonians , 1971 .
[24] Cornelis Vuik,et al. Spectral Analysis of the Discrete Helmholtz Operator Preconditioned with a Shifted Laplacian , 2007, SIAM J. Sci. Comput..
[25] Y. Erlangga,et al. ON A MULTILEVEL KRYLOV METHOD FOR THE HELMHOLTZ EQUATION PRECONDITIONED BY SHIFTED LAPLACIAN , 2008 .
[26] Michael B. Giles,et al. Preconditioned iterative solution of the 2D Helmholtz equation , 2002 .
[27] Marcus J. Grote,et al. Algebraic Multilevel Preconditioner for the Helmholtz Equation in Heterogeneous Media , 2009, SIAM J. Sci. Comput..
[28] René-Édouard Plessix,et al. Separation-of-variables as a preconditioner for an iterative Helmholtz solver , 2003 .
[29] A. Bayliss,et al. On accuracy conditions for the numerical computation of waves , 1985 .
[30] Erkki Heikkola,et al. An algebraic multigrid based shifted-Laplacian preconditioner for the Helmholtz equation , 2007, J. Comput. Phys..
[31] Jean-Pierre Berenger,et al. A perfectly matched layer for the absorption of electromagnetic waves , 1994 .
[32] Wim Vanroose,et al. Local Fourier analysis of the complex shifted Laplacian preconditioner for Helmholtz problems , 2011, Numer. Linear Algebra Appl..
[33] Cornelis Vuik,et al. On a Class of Preconditioners for Solving the Helmholtz Equation , 2003 .
[34] Wim Vanroose,et al. On the indefinite Helmholtz equation: Complex stretched absorbing boundary layers, iterative analysis, and preconditioning , 2009, J. Comput. Phys..
[35] Cornelis Vuik,et al. On the convergence of shifted Laplace preconditioner combined with multilevel deflation , 2013, Numer. Linear Algebra Appl..
[36] William L. Briggs,et al. A multigrid tutorial , 1987 .
[37] Cornelis Vuik,et al. A new iterative solver for the time-harmonic wave equation , 2006 .
[38] R. Bank,et al. Sharp Estimates for Multigrid Rates of Convergence with General Smoothing and Acceleration , 1985 .
[39] Wim Vanroose,et al. Analyzing the wave number dependency of the convergence rate of a multigrid preconditioned Krylov method for the Helmholtz equation with an absorbing layer , 2011, Numer. Linear Algebra Appl..
[40] B. Engquist,et al. Sweeping preconditioner for the Helmholtz equation: Hierarchical matrix representation , 2010, 1007.4290.