A new level‐dependent coarse grid correction scheme for indefinite Helmholtz problems

SUMMARY In this paper, we construct and analyze a level-dependent coarse grid correction scheme for indefinite Helmholtz problems. This adapted multigrid (MG) method is capable of solving the Helmholtz equation on the finest grid using a series of MG cycles with a grid-dependent complex shift, leading to a stable correction scheme on all levels. It is rigorously shown that the adaptation of the complex shift throughout the MG cycle maintains the functionality of the two-grid correction scheme, as no smooth modes are amplified in or added to the error. In addition, a sufficiently smoothing relaxation scheme should be applied to ensure damping of the oscillatory error components. Numerical experiments on various benchmark problems show the method to be competitive with or even outperform the current state-of-the-art MG-preconditioned Krylov methods, for example, complex shifted Laplacian preconditioned flexible GMRES. Copyright © 2013 John Wiley & Sons, Ltd.

[1]  Cornelis W. Oosterlee,et al.  Algebraic Multigrid Solvers for Complex-Valued Matrices , 2008, SIAM J. Sci. Comput..

[2]  K. Stüben,et al.  Multigrid methods: Fundamental algorithms, model problem analysis and applications , 1982 .

[3]  R. P. Fedorenko The speed of convergence of one iterative process , 1964 .

[4]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[5]  Achi Brandt,et al.  Multigrid method for nearly singular and slightly indefinite problems , 1986 .

[6]  Cornelis Vuik,et al.  A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems , 2005, SIAM J. Sci. Comput..

[7]  Wim Vanroose,et al.  Complete Photo-Induced Breakup of the H2 Molecule as a Probe of Molecular Electron Correlation , 2005, Science.

[8]  Y. Saad,et al.  Preconditioning Helmholtz linear systems , 2010 .

[9]  A. Brandt,et al.  WAVE-RAY MULTIGRID METHOD FOR STANDING WAVE EQUATIONS , 1997 .

[10]  Valeria Simoncini,et al.  Flexible Inner-Outer Krylov Subspace Methods , 2002, SIAM J. Numer. Anal..

[11]  Reinhard Nabben,et al.  Algebraic Multilevel Krylov Methods , 2009, SIAM J. Sci. Comput..

[12]  Dianne P. O'Leary,et al.  A Multigrid Method Enhanced by Krylov Subspace Iteration for Discrete Helmholtz Equations , 2001, SIAM J. Sci. Comput..

[13]  William L. Briggs,et al.  A multigrid tutorial, Second Edition , 2000 .

[14]  Martin J. Gander,et al.  Why it is Difficult to Solve Helmholtz Problems with Classical Iterative Methods , 2012 .

[15]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[16]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[17]  A. Bayliss,et al.  An Iterative method for the Helmholtz equation , 1983 .

[18]  Cornelis Vuik,et al.  Comparison of multigrid and incomplete LU shifted-Laplace preconditioners for the inhomogeneous Helmholtz equation , 2006 .

[19]  Henri Calandra,et al.  Two-Level preconditioned Krylov subspace methods for the solution of three-dimensional heterogeneous Helmholtz problems in seismics , 2012 .

[20]  Cornelis Vuik,et al.  A SCALABLE HELMHOLTZ SOLVER COMBINING THE SHIFTED LAPLACE PRECONDITIONER WITH MULTIGRID DEFLATION , 2011 .

[21]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[22]  Scott P. MacLachlan,et al.  A fast method for the solution of the Helmholtz equation , 2011, J. Comput. Phys..

[23]  J. Combes,et al.  A class of analytic perturbations for one-body Schrödinger Hamiltonians , 1971 .

[24]  Cornelis Vuik,et al.  Spectral Analysis of the Discrete Helmholtz Operator Preconditioned with a Shifted Laplacian , 2007, SIAM J. Sci. Comput..

[25]  Y. Erlangga,et al.  ON A MULTILEVEL KRYLOV METHOD FOR THE HELMHOLTZ EQUATION PRECONDITIONED BY SHIFTED LAPLACIAN , 2008 .

[26]  Michael B. Giles,et al.  Preconditioned iterative solution of the 2D Helmholtz equation , 2002 .

[27]  Marcus J. Grote,et al.  Algebraic Multilevel Preconditioner for the Helmholtz Equation in Heterogeneous Media , 2009, SIAM J. Sci. Comput..

[28]  René-Édouard Plessix,et al.  Separation-of-variables as a preconditioner for an iterative Helmholtz solver , 2003 .

[29]  A. Bayliss,et al.  On accuracy conditions for the numerical computation of waves , 1985 .

[30]  Erkki Heikkola,et al.  An algebraic multigrid based shifted-Laplacian preconditioner for the Helmholtz equation , 2007, J. Comput. Phys..

[31]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[32]  Wim Vanroose,et al.  Local Fourier analysis of the complex shifted Laplacian preconditioner for Helmholtz problems , 2011, Numer. Linear Algebra Appl..

[33]  Cornelis Vuik,et al.  On a Class of Preconditioners for Solving the Helmholtz Equation , 2003 .

[34]  Wim Vanroose,et al.  On the indefinite Helmholtz equation: Complex stretched absorbing boundary layers, iterative analysis, and preconditioning , 2009, J. Comput. Phys..

[35]  Cornelis Vuik,et al.  On the convergence of shifted Laplace preconditioner combined with multilevel deflation , 2013, Numer. Linear Algebra Appl..

[36]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[37]  Cornelis Vuik,et al.  A new iterative solver for the time-harmonic wave equation , 2006 .

[38]  R. Bank,et al.  Sharp Estimates for Multigrid Rates of Convergence with General Smoothing and Acceleration , 1985 .

[39]  Wim Vanroose,et al.  Analyzing the wave number dependency of the convergence rate of a multigrid preconditioned Krylov method for the Helmholtz equation with an absorbing layer , 2011, Numer. Linear Algebra Appl..

[40]  B. Engquist,et al.  Sweeping preconditioner for the Helmholtz equation: Hierarchical matrix representation , 2010, 1007.4290.