Quantum state tomography of orbital angular momentum photonic qubits via a projection-based technique

While measuring the orbital angular momentum state of bright light beams can be performed using imaging techniques, a full characterization at the single-photon level is challenging. For applications to quantum optics and quantum information science, such characterization is an essential capability. Here, we present a setup to perform the quantum state tomography of photonic qubits encoded in this degree of freedom. The method is based on a projective technique using spatial mode projection via fork holograms and single-mode fibers inserted into an interferometer. The alignment and calibration of the device is detailed as well as the measurement sequence to reconstruct the associated density matrix. Possible extensions to higher-dimensional spaces are discussed.

[1]  D. Sornette,et al.  Stretched exponential distributions in nature and economy: “fat tails” with characteristic scales , 1998, cond-mat/9801293.

[2]  Pu Jian,et al.  Programmable unitary spatial mode manipulation. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[3]  Ebrahim Karimi,et al.  Radial coherent and intelligent states of paraxial wave equation. , 2012, Optics letters.

[4]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.

[5]  Anton Zeilinger,et al.  The Forgotten Quantum Number: A short note on the radial modes of Laguerre-Gauss beams , 2013 .

[6]  W. Marsden I and J , 2012 .

[7]  Jonathan Leach,et al.  Direct measurement of a 27-dimensional orbital-angular-momentum state vector , 2013, Nature Communications.

[8]  A. Vaziri,et al.  Experimental quantum cryptography with qutrits , 2005, quant-ph/0511163.

[9]  M. Lavery,et al.  Efficient sorting of orbital angular momentum states of light. , 2010, Physical review letters.

[10]  Olga Minaeva,et al.  Object identification using correlated orbital angular momentum states , 2012, CLEO: 2013.

[11]  J. Bowers,et al.  Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction , 2012, Light: Science & Applications.

[12]  A. Nicolas,et al.  A quantum memory for orbital angular momentum photonic qubits , 2013, Nature Photonics.

[13]  Jan-AAke Larsson,et al.  Loopholes in Bell inequality tests of local realism , 2014, 1407.0363.

[14]  D. Grier A revolution in optical manipulation , 2003, Nature.

[15]  S. Barnett,et al.  Measuring the orbital angular momentum of a single photon. , 2002, Physical review letters.

[16]  A. Zeilinger,et al.  Communication with spatially modulated light through turbulent air across Vienna , 2014, 1402.2602.

[17]  Robert W Boyd,et al.  Near-perfect sorting of orbital angular momentum and angular position states of light. , 2012, Optics express.

[18]  Zach DeVito,et al.  Opt , 2017 .

[19]  J. Řeháček,et al.  Wavefront sensing reveals optical coherence , 2014, Nature Communications.

[20]  최인후,et al.  13 , 1794, Tao te Ching.

[21]  Robert W Boyd,et al.  Efficient separation of the orbital angular momentum eigenstates of light , 2013, Nature Communications.

[22]  Robert Fickler,et al.  Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information , 2014, Nature Communications.

[23]  Pierre Cladé,et al.  Quantized rotation of atoms from photons with orbital angular momentum. , 2006, Physical review letters.

[24]  Nadine Gottschalk,et al.  Fundamentals Of Photonics , 2016 .

[25]  R. W. Boyd,et al.  Radial quantum number of Laguerre-Gauss modes , 2014, 1401.4985.

[26]  N. Davidson,et al.  Topological stability of stored optical vortices , 2007, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[27]  M. Thompson,et al.  Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit , 2012 .

[28]  A. Nicolas,et al.  A reversible optical memory for twisted photons , 2012, CLEO: 2013.

[29]  G. Guo,et al.  Single-photon-level quantum image memory based on cold atomic ensembles , 2013, Nature Communications.

[30]  D. Maxein,et al.  Fiber-pigtailed optical tweezer for single-atom trapping and single-photon generation , 2013, 1310.3782.

[31]  E. Milotti,et al.  Quantum explorations: from the waltz of the Pauli exclusion principle to the rock of the spontaneous collapse , 2015 .

[32]  Adetunmise C. Dada,et al.  Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities , 2011, 1104.5087.

[33]  V. D'Ambrosio,et al.  Complete experimental toolbox for alignment-free quantum communication , 2012, Nature Communications.

[34]  L. Torner,et al.  Twisted Photons: Applications of Light with Orbital Angular Momentum , 2011 .

[35]  Mikhail V. Vasnetsov,et al.  LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Mode separator for a beam with an off-axis optical vortex , 2001 .

[36]  A. Willner,et al.  Terabit free-space data transmission employing orbital angular momentum multiplexing , 2012, Nature Photonics.

[37]  Topological stability of stored optical vortices , 2008 .

[38]  Jörg Enderlein,et al.  Using fluorescence lifetime for discriminating detector afterpulsing in fluorescence-correlation spectroscopy , 2005 .

[39]  A. Vaziri,et al.  Entanglement of the orbital angular momentum states of photons , 2001, Nature.

[40]  Andrew G. Glen,et al.  APPL , 2001 .

[41]  I. Malitson Interspecimen Comparison of the Refractive Index of Fused Silica , 1965 .

[42]  Entanglement of orbital angular momentum states between an ensemble of cold atoms and a photon , 2006, quant-ph/0604165.

[43]  Collapses and revivals of stored orbital angular momentum of light in a cold-atom ensemble , 2009, 0901.0939.

[44]  Anders Karlsson,et al.  Quantum key distribution using multilevel encoding: security analysis , 2001 .

[45]  M. Takeda,et al.  Detection of superposition in the orbital angular momentum of photons without excess components and its application in the verification of non-classical correlation , 2011 .

[46]  Johannes Courtial,et al.  Refractive elements for the measurement of the orbital angular momentum of a single photon. , 2012, Optics express.

[47]  Ying Li,et al.  Photonic polarization gears for ultra-sensitive angular measurements , 2013, Nature Communications.

[48]  D. Simon,et al.  High-capacity quantum Fibonacci coding for key distribution , 2013 .

[49]  Ebrahim Karimi,et al.  Exploring the quantum nature of the radial degree of freedom of a photon via Hong-Ou-Mandel interference , 2014 .

[50]  Nicolò Spagnolo,et al.  Three-photon bosonic coalescence in an integrated tritter , 2012, Nature Communications.

[51]  M. Koashi,et al.  Measuring qutrit-qutrit entanglement of orbital angular momentum states of an atomic ensemble and a photon. , 2009, Physical review letters.