Somatic generation of antibody diversity

[1]  H. Eisen,et al.  Diversity at the variable-joining region boundary of lambda light chains has a pronounced effect on immunoglobulin ligand-binding activity. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[2]  L. Staudt,et al.  Generation of antibody diversity in the immune response of BALB/c mice to influenza virus hemagglutinin. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[3]  M Karplus,et al.  Molecular anatomy of the antibody binding site. , 1983, The Journal of biological chemistry.

[4]  S. Tonegawa,et al.  Diversity and joining segments of mouse immunoglobulin heavy chain genes are closely linked and in the same orientation: implications for the joining mechanism. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[5]  H. Zachau,et al.  A novel type of aberrant recombination in immunoglobulin genes and its implications for V–J joining mechanism , 1983, Nature.

[6]  H. Eisen,et al.  Unusual association of V, J and C regions in a mouse immunoglobulin λ chain , 1982, Nature.

[7]  F. Alt,et al.  Continuing kappa-gene rearrangement in a cell line transformed by Abelson murine leukemia virus , 1982, Cell.

[8]  K. Marcu Immunoglobulin heavy-chain constant-region genes , 1982, Cell.

[9]  L. Hood,et al.  Immunoglobulin gene rearrangements in normal mouse B cells , 1982, Molecular and cellular biology.

[10]  F. Alt,et al.  Joining of immunoglobulin heavy chain gene segments: implications from a chromosome with evidence of three D-JH fusions. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[11]  R. Dildrop,et al.  Immunoglobulin V region variants in hybridoma cells. II. Recombination between V genes. , 1982, The EMBO journal.

[12]  F. Blattner,et al.  Simultaneous expression of immunoglobulin mu and delta heavy chains by a cloned B-cell lymphoma: a single copy of the VH gene is shared by two adjacent CH genes. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[13]  G. Gutman,et al.  Rat kappa-chain J-segment genes: Two recent gene duplications separate rat and mouse , 1982, Cell.

[14]  T. Honjo,et al.  Organization of the constant-region gene family of the mouse immunoglobulin heavy chain , 1982, Cell.

[15]  H. Zachau,et al.  Recombined flanks of the variable and joining segments of immunoglobulin genes. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[16]  E. Selsing,et al.  Structural alterations in J regions of mouse immunoglobulin λ genes are associated with differential gene expression , 1982, Nature.

[17]  S. Tonegawa,et al.  Organization, structure, and assembly of immunoglobulin heavy chain diversity DNA segments , 1982, The Journal of experimental medicine.

[18]  I. Weissman,et al.  Somatic diversification is required to generate the V kappa genes of MOPC 511 and MOPC 167 myeloma proteins. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Mark M. Davis,et al.  Antibody diversity: Somatic hypermutation of rearranged VH genes , 1981, Cell.

[20]  E. Selsing,et al.  Mapping of immunoglobulin variable region genes: relationship to the 'deletion' model of immunoglobulin gene rearrangement. , 1981, Nucleic acids research.

[21]  D. Baltimore Somatic mutation gains its place among the generators of diversity , 1981, Cell.

[22]  M. Whiteley,et al.  RNA splicing mutation in an aberrantly rearranged immunoglobulin lambda I gene. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[23]  D. Givol,et al.  Diversity of germ-line immunoglobulin VH genes , 1981, Nature.

[24]  D. Baltimore,et al.  Multiple differences between the nucleic acid sequences of the IgG2aa and IgG2ab alleles of the mouse. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[25]  E. Selsing,et al.  Somatic mutation of immunoglobulin light-chain variable-region genes , 1981, Cell.

[26]  Leroy Hood,et al.  A single VH gene segment encodes the immune response to phosphorylcholine: Somatic mutation is correlated with the class of the antibody , 1981, Cell.

[27]  H. Zachau,et al.  Differences between germ-line and rearranged immunoglobulin Vκ coding sequences suggest a localized mutation mechanism , 1981, Nature.

[28]  S. Tonegawa,et al.  Organization of four mouse lambda light chain immunoglobulin genes. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[29]  D. Baltimore Gene conversion: Some implications for immunoglobulin genes , 1981, Cell.

[30]  D. Baltimore,et al.  Heavy chain variable region contribution to the NPb family of antibodies: somatic mutation evident in a γ2a variable region , 1981, Cell.

[31]  Leroy Hood,et al.  IgG antibodies to phosphorylcholine exhibit more diversity than their IgM counterparts , 1981, Nature.

[32]  S. Tonegawa,et al.  The role of DNA rearrangement and alternative RNA processing in the expression of immunoglobulin delta genes , 1981, Cell.

[33]  S. Tonegawa,et al.  Identification of D segments of immunoglobulin heavy-chain genes and their rearrangement in T lymphocytes , 1981, Nature.

[34]  S. Tonegawa,et al.  Identification and nucleotide sequence of a diversity DNA segment (D) of immunoglobulin heavy-chain genes , 1981, Nature.

[35]  T. Waldmann,et al.  Human immunoglobulin κ light-chain genes are deleted or rearranged in λ-producing B cells , 1981, Nature.

[36]  P. D’Eustachio,et al.  Chromosomal location of structural genes encoding murine immunoglobulin lambda light chains. Genetics of murine lambda light chains , 1981, The Journal of experimental medicine.

[37]  L. Hood,et al.  Allelic exclusion and nonproductive immunoglobulin gene rearrangements , 1981, Cell.

[38]  T. Honjo,et al.  Structure of a rearranged gamma 1 chain gene and its implication to immunoglobulin class-switch mechanism. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[39]  E. Selsing,et al.  Misalignment of V and J gene segments resulting in a nonfunctional immunoglobulin gene. , 1981, Nucleic acids research.

[40]  D. Baltimore,et al.  Dual expression of λ genes in the MOPC-315 plasmacytoma , 1981, Nature.

[41]  L. Hood,et al.  Expression of IgD may use both DNA rearrangement and RNA splicing mechanisms. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[42]  T. Miyata,et al.  Repetitive sequences in class-switch recombination regions of immunoglobulin heavy chain genes , 1981, Cell.

[43]  T. Rabbitts,et al.  Structure and multiplicity of genes for the human immunoglobulin heavy chain variable region. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[44]  D. Givol,et al.  Cloning and sequence of the cDNA corresponding to the variable region of immunoglobulin heavy chain MPC11 , 1980 .

[45]  H. Zachau,et al.  Functional and non-functional joining in immunoglobulin light chain genes of a mouse myeloma , 1980, Nature.

[46]  S P Kwan,et al.  Immunoglobulin V/J recombination is accompanied by deletion of joining site and variable region segments. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[47]  J. Seidman,et al.  Variation in the crossover point of kappa immunoglobulin gene V-J recombination: Evidence from a cryptic gene , 1980, Cell.

[48]  F. Blattner,et al.  Mouse immunoglobulin D: messenger RNA and genomic DNA sequences. , 1980, Science.

[49]  S. Tonegawa,et al.  Immunoglobulin gene rearrangement in immature B cells. , 1980, Science.

[50]  Hitoshi Sakano,et al.  Two types of somatic recombination are necessary for the generation of complete immunoglobulin heavy-chain genes , 1980, Nature.

[51]  J. Rogers,et al.  Two mRNAs can be produced from a single immunoglobulin μ gene by alternative RNA processing pathways , 1980, Cell.

[52]  David Baltimore,et al.  Synthesis of secreted and membrane-bound immunoglobulin mu heavy chains is directed by mRNAs that differ at their 3′ ends , 1980, Cell.

[53]  J. Rogers,et al.  Two mRNAs with different 3′ ends encode membrane-bound and secreted forms of immunoglobulin μ chain , 1980, Cell.

[54]  P. D’Eustachio,et al.  Chromosomal location of the structural gene cluster encoding murine immunoglobulin heavy chains , 1980, The Journal of experimental medicine.

[55]  H. Zachau,et al.  A rearranged DNA sequence possibly related to the translocation of immunoglobulin gene segments. , 1980, Nucleic acids research.

[56]  S. Tonegawa,et al.  Exon shuffling generates an immunoglobulin heavy chain gene. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[57]  L. Hood,et al.  An immunoglobulin heavy chain variable region gene is generated from three segments of DNA: VH, D and JH , 1980, Cell.

[58]  T. Rabbitts,et al.  Contribution of immunoglobulin heavy-chain variable-region genes to antibody diversity , 1980, Nature.

[59]  Mark M. Davis,et al.  An immunoglobulin heavy-chain gene is formed by at least two recombinational events , 1980, Nature.

[60]  Tim Hunkapiller,et al.  The joining of V and J gene segments creates antibody diversity , 1980, Nature.

[61]  L. Hood,et al.  Amino acid sequence of homogeneous antibodies to dextran and DNA rearrangments in heavy chain V-region gene segments , 1980, Nature.

[62]  S. Cory,et al.  Identical 3′ non-coding sequences in five mouse Ig κ chain mRNAs favour a unique Cκ gene , 1979, Nature.

[63]  Hitoshi Sakano,et al.  Sequences at the somatic recombination sites of immunoglobulin light-chain genes , 1979, Nature.

[64]  J. Seidman,et al.  Sequences of five potential recombination sites encoded close to an immunoglobulin kappa constant region gene. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[65]  P. D’Eustachio,et al.  Chromosomal assignment of the mouse kappa light chain genes. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[66]  L. Hood,et al.  Immunoglobulin heavy chain gene organization in mice: analysis of a myeloma genomic clone containing variable and alpha constant regions. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[67]  S. Tonegawa,et al.  Domains and the hinge region of an immunoglobulin heavy chain are encoded in separate DNA segments , 1979, Nature.

[68]  J. Seidman,et al.  The arrangement and rearrangement of antibody genes , 1978, Nature.

[69]  R. Perry,et al.  Multiplicity of germline genes specifying a group of related mouse κ chains with implications for the generation of immunoglobulin diversity , 1978, Nature.

[70]  S. Tonegawa,et al.  Sequences of mouse immunoglobulin light chain genes before and after somatic changes , 1978, Cell.

[71]  L. Hood,et al.  Rearrangement of genetic information may produce immunoglobulin diversity , 1978, Nature.

[72]  S. Tonegawa,et al.  DNA clones containing mouse immunoglobulin kappa chain genes isolated by in vitro packaging into phage lambda coats. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[73]  H. Hengartner,et al.  Assignment of genes for immunoglobulin kappa and heavy chains to chromosomes 6 and 12 in mouse. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[74]  Susumu Tonegawa,et al.  A complete immunoglobulin gene is created by somatic recombination , 1978, Cell.

[75]  M. Potter,et al.  Mechanisms of antibody diversity: multiple genes encode structurally related mouse kappa variable regions. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[76]  J. Seidman,et al.  Multiple related immunoglobulin variable-region genes identified by cloning and sequence analysis. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[77]  S. Tonegawa,et al.  Characterization of a mouse DNA clone containing an immunoglobulin variable region gene. , 1978, Nucleic acids research.

[78]  S. Tonegawa,et al.  Sequence of a mouse germ-line gene for a variable region of an immunoglobulin light chain. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[79]  T. Rabbitts,et al.  Evidence for noncontiguous variable and constant region genes in both germ line and myeloma DNA , 1978, Cell.

[80]  S. Tonegawa,et al.  Variable and constant parts of the immunoglobulin light chain gene of a mouse myeloma cell are 1250 nontranslated bases apart. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[81]  S. Tonegawa,et al.  Cloning of an immunoglobulin variable region gene from mouse embryo. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[82]  S. Tonegawa,et al.  Evidence for somatic rearrangement of immunoglobulin genes coding for variable and constant regions. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[83]  L. Herzenberg,et al.  Demonstration that IgG memory is carried by IgG‐bearing cells , 1976, European journal of immunology.

[84]  R. W. Davis,et al.  Hybridization of RNA to double-stranded DNA: formation of R-loops. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[85]  E. Southern Detection of specific sequences among DNA fragments separated by gel electrophoresis. , 1975, Journal of molecular biology.

[86]  M. Steward Staphylococci and Staphylococcal Infections: Recent Progress , 1975 .

[87]  R. Bradshaw,et al.  Amino acid sequence of the light chain of a mouse myeloma protein (MOPC-315). , 1973, Biochemistry.

[88]  D. Nathans,et al.  Studies of simian virus 40 DNA. VII. A cleavage map of the SV40 genome. , 1973, Journal of molecular biology.

[89]  G. Edelman Antibody structure and molecular immunology. , 1973, Science.

[90]  R. Porter Structural Studies of Immunoglobulins , 1973, Science.

[91]  B. Askonas,et al.  Factors affecting the propagation of a B Cell Clone forming antibody to the 2,4‐dinitrophenyl group , 1972, European journal of immunology.

[92]  M. Cohn,et al.  Variability in the Lambda Light Chain Sequences of Mouse Antibody , 1970, Nature.

[93]  M. Cohn Selection under a somatic model. , 1970, Cellular immunology.

[94]  T. T. Wu,et al.  AN ANALYSIS OF THE SEQUENCES OF THE VARIABLE REGIONS OF BENCE JONES PROTEINS AND MYELOMA LIGHT CHAINS AND THEIR IMPLICATIONS FOR ANTIBODY COMPLEMENTARITY , 1970, The Journal of experimental medicine.

[95]  J. Gally,et al.  Somatic Translocation of Antibody Genes , 1970, Nature.

[96]  T. Kindt,et al.  Association of allotypic specificities of group a with allotypic specificities A11 and A12 in rabbit immunoglobulin. , 1970, Biochemistry.

[97]  L. Hood,et al.  Mechanism of antibody diversity: germ line basis for variability. , 1970, Science.

[98]  R. Mage,et al.  Distribution of allotypic specificities A1, A2, A14, and A15 among immunoglobulin G molecules. , 1970, Journal of immunology.

[99]  S. Dubiski Immunochemistry and genetics of a "new" allotypic specificity Ae14 of rabbit gamma-G immunoglobulins: recombination in somatic cells. , 1969, Journal of immunology.

[100]  H. Whitehouse Crossover Model of Antibody Variability , 1967, Nature.

[101]  O. Smithies Antibody Variability , 1967, Science.

[102]  S. Brenner,et al.  Origin of Antibody Variation , 1966, Nature.

[103]  M. Burnet A Possible Genetic Basis for Specific Pattern in Antibody , 1966, Nature.

[104]  W. Dreyer,et al.  The molecular basis of antibody formation: a paradox. , 1965, Proceedings of the National Academy of Sciences of the United States of America.

[105]  N. Hilschmann,et al.  Amino acid sequence studies with Bence-Jones proteins. , 1965, Proceedings of the National Academy of Sciences of the United States of America.

[106]  F. Putnam,et al.  STRUCTURAL STUDIES OF THE IMMUNOGLOBULINS. I. THE TRYPTIC PEPTIDES OF BENCE-JONES PROTEINS. , 1965, The Journal of biological chemistry.

[107]  H. Eisen,et al.  VARIATIONS IN AFFINITIES OF ANTIBODIES DURING THE IMMUNE RESPONSE. , 1964, Biochemistry.

[108]  J. Lederberg Genes and antibodies. , 1959, Science.

[109]  N. K. Jerne,et al.  THE NATURAL-SELECTION THEORY OF ANTIBODY FORMATION. , 1955, Proceedings of the National Academy of Sciences of the United States of America.

[110]  R. Perry,et al.  DNA between variable and joining gene segments of immunoglobulin kappa light chain is frequently retained in cells that rearrange the kappa locus. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[111]  S. Tonegawa,et al.  DNA sequences of the joining regions of mouse lambda light chain immunoglobulin genes. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[112]  J. Kearney,et al.  Organization and expression of immunoglobulin genes in fetal liver hybridomas. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[113]  H. Eisen,et al.  Identification of a third type of lambda light chain in mouse immunoglobulins. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[114]  T. Honjo,et al.  Organization and reorganization of immunoglobulin heavy-chain genes. , 1981, Cold Spring Harbor symposia on quantitative biology.

[115]  L. Hood,et al.  Two types of DNA rearrangements in immunoglobulin genes. , 1981, Cold Spring Harbor symposia on quantitative biology.

[116]  S. Tonegawa,et al.  Linkage of the four gamma subclass heavy chain genes. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[117]  N. Gough,et al.  Sequences of the joining region genes for immunoglobulin heavy chains and their role in generation of antibody diversity. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[118]  J. Johnson,et al.  Linkage analyses of murine immunoglobulin heavy chain and serum prealbumin genes establish their location on chromosome 12 proximal to the T (5;12) 31H breakpoint in band 12F1. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[119]  M. Weigert,et al.  Genetic control of antibody variable regions. , 1977, Cold Spring Harbor symposia on quantitative biology.

[120]  S. Tonegawa,et al.  Somatic changes in the content and context of immunoglobulin genes. , 1977, Cold Spring Harbor symposia on quantitative biology.

[121]  S. Tonegawa Reiteration frequency of immunoglobulin light chain genes: further evidence for somatic generation of antibody diversity. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[122]  E. Padlan,et al.  Three-dimensional structure of immunoglobulins. , 1975, Annual review of biochemistry.

[123]  M. Potter,et al.  CHAPTER 4 – Immunoglobulin Allotypes , 1973 .

[124]  J. Bishop,et al.  Molecular hybridization of ribonucleic acid with a large excess of deoxyribonucleic acid. , 1972, The Biochemical journal.

[125]  M. Potter,et al.  Antigen-binding myeloma proteins in mice. , 1971, Annals of the New York Academy of Sciences.

[126]  R. Britten,et al.  Transcription of nonrepeated DNA in neonatal and fetal mice. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[127]  N. K. Jerne,et al.  The somatic generation of immune recognition , 1971, European journal of immunology.

[128]  F. Burnet The clonal selection theory of acquired immunity , 1959 .