Gradient-Domain Image Reconstruction Framework with Intensity-Range and Base-Structure Constraints

This paper presents a novel unified gradient-domain image reconstruction framework with intensity-range constraint and base-structure constraint. The existing method for manipulating base structures and detailed textures are classifiable into two major approaches: i) gradient-domain and ii) layer-decomposition. To generate detail-preserving and artifact-free output images, we combine the benefits of the two approaches into the proposed framework by introducing the intensity-range constraint and the base-structure constraint. To preserve details of the input image, the proposed method takes advantage of reconstructing the output image in the gradient domain, while the output intensity is guaranteed to lie within the specified intensity range, e.g. 0-to-255, by the intensity-range constraint. In addition, the reconstructed image lies close to the base structure by the base-structure constraint, which is effective for restraining artifacts. Experimental results show that the proposed framework is effective for various applications such as tone mapping, seamless image cloning, detail enhancement, and image restoration.

[1]  Michael F. Cohen,et al.  GradientShop: A gradient-domain optimization framework for image and video filtering , 2010, TOGS.

[2]  Chongzhao Han,et al.  Poisson image fusion based on Markov random field fusion model , 2013, Inf. Fusion.

[3]  Aljoscha Smolic,et al.  Suplemental Material for Temporally Coherent Local Tone Mapping of HDR Video , 2014 .

[4]  Shunsuke Ono,et al.  A Convex Regularizer for Reducing Color Artifact in Color Image Recovery , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[5]  David Connah,et al.  Spectral Edge Image Fusion: Theory and Applications , 2014, ECCV.

[6]  Bruce Gooch,et al.  Color2Gray: salience-preserving color removal , 2005, ACM Trans. Graph..

[7]  Michael M. Kazhdan,et al.  Poisson surface reconstruction , 2006, SGP '06.

[8]  Li Xu,et al.  Structure extraction from texture via relative total variation , 2012, ACM Trans. Graph..

[9]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[10]  Zeev Farbman,et al.  Edge-preserving decompositions for multi-scale tone and detail manipulation , 2008, ACM Trans. Graph..

[11]  Michael F. Cohen,et al.  Digital photography with flash and no-flash image pairs , 2004, ACM Trans. Graph..

[12]  Rob Fergus,et al.  Fast Image Deconvolution using Hyper-Laplacian Priors , 2009, NIPS.

[13]  Michael S. Brown,et al.  Fast and Effective L0 Gradient Minimization by Region Fusion , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[14]  Frédo Durand,et al.  Fast Local Laplacian Filters , 2014, ACM Trans. Graph..

[15]  Rama Chellappa,et al.  An algebraic approach to surface reconstruction from gradient fields , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[16]  Wencheng Wang,et al.  Edge-Aware Gradient Domain Optimization Framework for Image Filtering by Local Propagation , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Zeev Farbman,et al.  Edge-preserving decompositions for multi-scale tone and detail manipulation , 2008, SIGGRAPH 2008.

[18]  Kari Pulli,et al.  FlexISP , 2014, ACM Trans. Graph..

[19]  Jian Sun,et al.  Guided Image Filtering , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Li Xu,et al.  Mutual-Structure for Joint Filtering , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[21]  Qi Zhang,et al.  Rolling Guidance Filter , 2014, ECCV.

[22]  Dani Lischinski,et al.  Gradient Domain High Dynamic Range Compression , 2023 .

[23]  Sabine Süsstrunk,et al.  Color image dehazing using the near-infrared , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[24]  Charlie C. L. Wang,et al.  Gradient based image completion by solving the Poisson equation , 2007, Comput. Graph..

[25]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[26]  Jian Sun,et al.  Poisson matting , 2004, ACM Trans. Graph..

[27]  Stephen P. Boyd,et al.  Proximal Algorithms , 2013, Found. Trends Optim..

[28]  Raanan Fattal,et al.  Edge-avoiding wavelets and their applications , 2009, ACM Trans. Graph..

[29]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[30]  Chuan Zhou,et al.  Gradient Based Image Completion by Solving Poisson Equation , 2005, PCM.

[31]  David Connah,et al.  Lookup-Table-Based Gradient Field Reconstruction , 2011, IEEE Transactions on Image Processing.

[32]  Shmuel Peleg,et al.  Seamless Image Stitching in the Gradient Domain , 2004, ECCV.

[33]  Harry Shum,et al.  Image completion with structure propagation , 2005, ACM Trans. Graph..

[34]  Jan Kautz,et al.  Local Laplacian filters: edge-aware image processing with a Laplacian pyramid , 2011, ACM Trans. Graph..

[35]  Frédo Durand,et al.  Two-scale tone management for photographic look , 2006, ACM Trans. Graph..

[36]  Dani Lischinski,et al.  Colorization using optimization , 2004, ACM Trans. Graph..

[37]  XuYi,et al.  Image smoothing via L0 gradient minimization , 2011 .

[38]  Patrick L. Combettes,et al.  Proximal Splitting Methods in Signal Processing , 2009, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[39]  Seungyong Lee,et al.  Bilateral texture filtering , 2014, ACM Trans. Graph..

[40]  Patrick Pérez,et al.  Poisson image editing , 2003, ACM Trans. Graph..

[41]  M. Kass,et al.  Smoothed local histogram filters , 2010, ACM Trans. Graph..

[42]  Seungyong Lee,et al.  Handling outliers in non-blind image deconvolution , 2011, 2011 International Conference on Computer Vision.

[43]  Ramesh Raskar,et al.  Image fusion for context enhancement and video surrealism , 2004, NPAR '04.